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Abstract
1. Environmental DNA (eDNA) metabarcoding has revolutionized biodiversity 

monitoring, offering non- invasive tools to assess ecosystem health. The 
complexity of eDNA metabarcoding data poses major challenges for conventional 
ordination methods in understanding assemblage similarities and assessing 
biodiversity patterns.

2. Here, we introduce ORDNA (ORDination via Deep Neural Algorithm), a new 
deep learning method tailored for eDNA sample ordination. Leveraging artificial 
neural networks, ORDNA processes raw sequences from eDNA samples directly, 
bypassing potentially biased and cumbersome expert- based bioinformatic steps. 
The method is trained with a contrastive self- supervised learning approach, the 
triplet loss, to derive a two- dimensional representation of eDNA samples based 
on their read composition.

3. We apply ORDNA to four distinct eDNA datasets, demonstrating its robustness 
and superiority over traditional ordination techniques in capturing and visualizing 
ecological patterns.

4. Our results underline the potential of deep learning in advancing eDNA analysis, 
with ORDNA serving as a promising tool for more accurate and efficient 
biodiversity assessments.
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1  |  INTRODUC TION

Biodiversity refers to the variety of life on Earth, encompassing 
the multitude of assemblages and species, and the genetic diver-
sity within them. The aim of biodiversity science is to measure 
the richness and complexity of biological organisms in a given 
place and to understand the abiotic and biotic drivers that shape 
them (Purvis & Hector, 2000). Measuring biodiversity is crucial 
for understanding the health of ecosystems, their resilience to 
environmental changes and their capacity to provide services to 
human societies (Mace et al., 2012). Summarizing biodiversity 
into numbers is challenging due to the complex ecological rela-
tionships between species, whose co- occurrence patterns result 
from interactions between them and with their surrounding abi-
otic environment (Marshall et al., 2020). Despite these difficulties, 
quantifying biodiversity is essential for informed conservation and 
management efforts (Strange et al., 2024), as it provides a base-
line for assessing environmental changes (Dornelas et al., 2013). 
In particular, essential biodiversity variables (e.g. allelic diversity, 
taxonomic diversity or habitat structure) are intended to summa-
rize ecosystem complexity into numbers reflecting diversity or 
composition (Pereira et al., 2013). These tools are highly valuable 
to guide and evaluate management efforts aimed at sustaining the 
diverse functions and benefits of biodiversity (Jetz et al., 2019). 
However, species population indicators that address the distribu-
tion or composition of assemblages remain scarce. Therefore, the 
numerical characterization of biodiversity should be supported by 
methodological advancements in data collection, which require 
more efficient analytical approaches. These new approaches will 
in turn enhance the availability of such data for ecological man-
agement and policy decisions.

Environmental DNA (eDNA) has emerged as a revolutionary 
tool for monitoring and assessing biodiversity (Deiner et al., 2017). 
This technology enables the capture and sequencing of DNA frag-
ments shed by organisms into their environment, providing a snap-
shot of the biological communities present in a particular habitat 
without the need for direct observation, thereby causing minimal 
disturbance (Polanco Fernández et al., 2021). Utilizing different 
primers allows targeted DNA sequencing of specific barcodes of 
a more or less specific group of organisms, enabling their iden-
tification within water, soil and air samples. This makes eDNA a 
fast, cost- effective, non- invasive and systematic method to assess 
the health status of an ecosystem (Cordier et al., 2019). eDNA 
datasets typically comprise millions of DNA reads per sample, and 
errors may be introduced during various steps of the sequencing 
process, such as amplification or base calling errors. These errors 
can, in turn, introduce biases or inaccuracies in the derived data, 
affecting the subsequent ecological analysis and potentially lead-
ing to misinterpretations of ecological signals (Burian et al., 2021). 
Moreover, ecosystem properties are embedded in complex non- 
linear relationships within and between eDNA samples. This un-
precedented data complexity and noisiness represent a major 
challenge for conventional ordination methods developed in an 

era when ecological datasets were comparatively less complex 
(e.g. species occurrence matrices). eDNA studies usually circum-
vent these issues by performing several bioinformatic steps to 
transform the reads into data exploitable by ordination methods 
(Marques et al., 2020). Specifically, bioinformatic pipelines use 
denoising (without clustering) to produce amplicon sequence 
variants (ASVs) or combine denoising with clustering to produce 
molecular operational taxonomic units (MOTUs). From these, one 
can then create a table of taxa occurrences (up to the species level) 
by comparing the obtained sequences to genetic reference data-
bases (Mathon et al., 2021). Finally, these tables can be converted 
to appropriate distance or (dis)similarity metrics before ordination 
(Lamperti et al., 2023). Each of these steps has the potential to in-
troduce additional biases, inaccuracies and loss of information. For 
instance, preferentially filtering or clustering certain sequences 
might affect the representation of the true biological diversity and 
abundance. In the case of detecting species presences, the incom-
pleteness of reference databases can lead to important informa-
tion loss (Burian et al., 2021). This underscores the necessity of 
adapting or developing methods tailored for eDNA metabarcoding 
that are capable of efficiently extracting and processing relevant 
information directly from raw data while being robust to noise.

The study of biodiversity typically relies on various measure-
ments of species abundances, presences/absences or traits, which 
are often summarized using ordinations to facilitate their ecological 
interpretation (Borcard et al., 2018). Ordination methods are partic-
ularly valuable for analysing beta diversity, as they simplify complex 
ecological datasets into interpretable dimensions, revealing pat-
terns and gradients in species composition and their relationships 
with environmental variables (Dray et al., 2012). They enable the 
discernment of patterns and gradients in species composition and 
environmental variables, offering a robust framework to explore 
the multidimensional nature of ecological interactions and their 
spatial organization (Borcard et al., 2004). Ordination reduces raw 
ecological data into a few interpretable dimensions that represent 
the main gradients of variation, thereby facilitating the visualization 
and understanding of underlying ecological processes and inform-
ing strategies for ecosystem management and conservation (Arranz 
et al., 2022; Leprieur et al., 2016). With a rich history of develop-
ment over many decades, ordination methods, such as principal 
coordinates analysis (PCoA) (Gower, 1966) and non- metric multi-
dimensional scaling (NMDS) (Kruskal, 1964), have played a central 
role in ecological analyses. They are not directly applicable to raw 
eDNA data, however, due to their complex representation, which 
lies in a high- dimensional space. To apply traditional ordination 
methods, eDNA sequence reads first need to be transformed into 
MOTU or ASV tables (Cilleros et al., 2019) by following a bioinfor-
matic workflow. Since this process involves many complex steps and 
user inputs, the results can suffer from biases and information loss 
(Lamperti et al., 2023). Therefore, developing alternative ordination 
approaches that directly use raw reads could improve the final data-
set representation and better automatize the analysis of the growing 
number of eDNA datasets.
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    |  3SANCHEZ et al.

Artificial neural networks (ANNs) excel at identifying complex 
patterns within large datasets, often outperforming traditional sta-
tistical methods in tasks such as classification, regression, clustering 
and data generation. ANNs rely on computational graphs structured 
as sequences of mathematical functions, called layers. An entire 
ANN architecture typically encompasses between thousands and 
billions of ‘trainable’ parameters that make up these layers, where 
each of them can be updated to minimize a loss function measuring 
the fit of the model's output to training data. To tailor an ANN to a 
specific task, one must define a loss function that quantifies the net-
work's performance on a training dataset for the specific problem. 
Then, optimization based on backpropagation and gradient descent 
adjusts the trainable parameters to decrease this error. In essence, 
deep learning algorithms (with ‘deep’ referring to ANNs with sev-
eral layers between input and output) are intended to automatically 
optimize complex non- linear functions parameterized by learnable 
weights and biases. Since the advances in parallel computing brought 
about by graphics processing units (GPUs), ANNs have proven to be 
a valuable tool in many domains involving high- dimensional data, 
such as computer vision, natural language processing and signal 
processing (Borowiec et al., 2022). Consequently, ANNs have also 
become a go- to tool for processing - omics data, approaching tasks 
such as protein binding site prediction, deducing protein structures 
and deciphering population genetics (Battey et al., 2020; Sanchez 
et al., 2021; Yan & Wang, 2023). These breakthroughs have also 
led ecologists to employ ANNs to predict species habitat distribu-
tions, analyse audio signals and automate the annotation of images 
from remote sensing or camera traps (Lang et al., 2023; LeBien 
et al., 2020; Vélez et al., 2023). These examples illustrate that, along-
side their ability to extract information from complex data, ANNs are 
also flexible regarding the type of data that can be processed. That is 
why ecologists have also leveraged them to extract information from 
eDNA metabarcoding data (Flück et al., 2022; Lamperti et al., 2023). 
Finally, ANNs have facilitated considerable advances in deep met-
ric learning, where one seeks to optimize an embedding space that 
follows a distance metric by pulling similar data points together and 
pushing dissimilar points further apart with respect to that metric 
(Kaya & Bilge, 2019). This naturally leads to an ordering of the data 
points along the embedding axes, which makes deep learning meth-
ods well suited for ordination, where the condensed representations 
of data should also result in an ordering along the most important 
gradients of variation.

Here, we leverage the ability of ANNs to process high- 
dimensional data with complex underlying structures to summarize 
the main ecological information in raw eDNA samples, bypassing 
possibly biased bioinformatic steps. Since eDNA datasets are un-
labelled collections of raw sequences, the problem of ordination 
cannot be approached with standard supervised learning based on 
explicit targets. We therefore use a relatively new family of tech-
niques grouped under the term self- supervised learning (SSL), which 
allows us to define suitable learning objectives based on automati-
cally created targets from unlabelled data. Contrastive SSL achieves 
this by defining similar or dissimilar data points from prior knowledge 

of the unlabelled data, as opposed to relying on an explicit human- 
annotated definition. By focusing on the dissimilarities and similari-
ties between samples, the SSL framework inherently aligns with the 
ecological concept of beta diversity, which emphasizes variation in 
species composition between communities. Here, we present the 
ORDNA (ORDination via Deep Neural Algorithm) method, a SSL al-
gorithm for the ordination of eDNA samples. Based on a contrastive 
SSL approach called triplet loss (Ge et al., 2018), ORDNA provides a 
representation of eDNA samples in a two- dimensional space based 
on the (dis)similarity of their read compositions. In our setting, each 
data point is an eDNA sample, and we consider two eDNA samples 
to be similar when they have similar read compositions. Analogous 
to ordination based on MOTUs or species detection, we use read 
composition as a proxy for the species community at a given sam-
ple location and time. We benchmark the method using four distinct 
eDNA datasets: fish assemblages recovered from water eDNA from 
(1) French Guiana and (2) Brittany and eukaryote assemblages re-
covered from soil samples from (3) several Swiss forests and (4) a 
polluted industrial area located in the town of Visp in south- western 
Switzerland (Coutant et al., 2023; Frossard et al., 2018; Rozanski 
et al., 2022). In particular, we ask the following questions:

1. How does the structure of ORDNA correlate with traditional 
post- bioinformatic ordinations? We compare ORDNA to PCoA 
applied after bioinformatic processing to assess their similar-
ity in reducing the dimensionality in the original dataset. We 
expect that ORDNA distances show a good correlation with 
PCoA distances, but that gradients are better represented by 
the non- linear embedding provided by ORDNA.

2. Does ORDNA extract more relevant ecological information from 
the eDNA metabarcoding data? We extract ecological informa-
tion from the different datasets and test how well it correlates 
with ORDNA and with the two principal dimensions of PCoA. 
Because of its non- linearity, we expect ORDNA to result in higher 
Pearson correlations with ecological data representing the envi-
ronments in which the samples were taken.

3. Can we use ORDNA to define an ordination space in which we 
can ordinate newly collected data to obtain new information? We 
use a temporal dataset collected in Brittany to train ORDNA; we 
define an ordination space based on the samples from 1 year and 
ordinate the data from the samples collected the following year. 
We expect that the ORDNA structure is mainly stable over time, 
so that the reprojected points of the second year fall close to 
those from the first year.

By applying our method to four different eDNA datasets, en-
compassing marine, freshwater and soil samples, we demonstrate 
that using ORDNA brings a key improvement in accuracy over tra-
ditional methods in various settings, underscoring its potential as a 
robust tool for eDNA analysis. Moreover, we show the potential of 
using ORDNA as a predictive method, where it is possible to extract 
information from raw eDNA samples by reprojecting them in a pre- 
calibrated ordination space.
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4  |    SANCHEZ et al.

2  |  MATERIAL S AND METHODS

2.1  |  Self- supervised ordination of eDNA samples

Similar to traditional ordination methods, our goal with ORDNA is 
to transform raw eDNA samples into low- dimensional embeddings 
that retain information about the relationship between ecological 
communities. We aim to ensure that samples with similar eDNA read 
compositions have a similar low- dimensional embedding, while dis-
similar ones are far apart in that space. To learn meaningful repre-
sentations, we employ a contrastive SSL objective. Following that 
objective, we optimize an ANN to find appropriate representations 
of eDNA samples, resulting in an ordering along the embedding axes.

The contrastive SSL approach requires that we define three sets 
of raw eDNA reads and employ them as so- called anchor (a), positive 
(p) and negative (n) examples (detailed below). Our model transforms 
each set into its embeddings, that is za, zp and zn. We then use a trip-
let loss function ℒ that forces the model to move the embeddings of 
the anchor and positive closer together in the embedding space than 
those of the anchor and negative, by some margin α:

Lacking an explicit metric for similarity between eDNA samples, 
we employ SSL to define suitable anchor, positive and negative ex-
amples directly from our unlabelled data. To this end, we assume 
that two distinct but appropriately large subsets of sequences from 
the same eDNA sample should result in very similar coordinates in 
the latent ordination space, as they are expected to represent the 
same species community. While these two groups of sequences are 
unlikely to be identical, they are expected to share more information 
with each other than with samples taken at different locations and, 
therefore, different read compositions. Under these assumptions, 

we develop an application of the triplet loss (Schroff et al., 2015), 
where at each training step the anchor and positive each consist of 
1000 different randomly sampled DNA sequences from the same 
eDNA sample, while the negative is a subset of 1000 sequences sam-
pled from any other eDNA sample. Note that the specific number of 
1000 sequences per element is arbitrary and can be adapted based 
on memory requirements, while keeping in mind that small subsets 
might not contain enough information for accurate ordinations.

We then implement an ANN architecture capable of transform-
ing groups of sequences into meaningful latent representations. We 
train it over many examples and iterations, to minimize the triplet 
loss function ℒ, with the AdamW optimization algorithm (Loshchilov 
& Hutter, 2017). In addition to the triplet loss function, we add stan-
dard L2 regularization to prevent the model from learning represen-
tations with arbitrarily large norms, as this could help it overcome 
the margin penalty. We aim to avoid this scenario and compel the 
model to address the margin penalty by creating meaningful lower- 
magnitude latent representations, effectively positioning negative 
examples sufficiently far away. Our final loss function becomes:

where λ is an additional tuneable parameter. Through the minimiza-
tion of this final loss function, we anticipate our model to converge to 
meaningful embeddings for all eDNA samples. The final representa-
tion of any eDNA sample corresponds to the average of the represen-
tations from all the subsets of 1000 sequences, ensuring that every 
sequence is used exactly once. Upon convergence, we expect that 
similar samples will be clustered closely together while very different 
ones will be far apart in the embedding space. These embeddings can 
then be used for ordination or further fine- tuning for any downstream 

(1)ℒ
(

za, zp , zn
)

= max
(

∥ za − zp ∥ − ∥ za − zn ∥ + �, 0
)

. (2)
ℒ
(

za, zp , zn
)

=max
(

∥ za−zp ∥ − ∥ za−zn ∥ +�, 0
)

+�

(

∥ za ∥ + ∥ zp ∥ + ∥ zn ∥

3

)

,

F I G U R E  1  Overview of ORDNA architecture and training procedure. (a) Two subsets of sequences are randomly selected from Sample 
1, forming the anchor and positive set. Simultaneously, a third subset is randomly chosen from Sample 2 to serve as the negative set. They 
are then projected into the embedding space by the ORDNA neural network. The final step involves the triplet loss, which the neural 
network optimizes by drawing the anchor and positive examples closer in the embedding space while pushing the negative set further 
away. (b) Overview of ORDNA's neural network architecture for transforming groups of sequences into embeddings. Forward and reverse 
sequences undergo initial encoding before being fed into a sequence of convolutional and fully connected layers. The representations of 
these sequences are further processed through a permutation- invariant, multi- head self- attention layer to obtain the final representation of 
the sample (see Supporting Information Section A.2 for more details about the implementation).

(a) (b)
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    |  5SANCHEZ et al.

supervised learning task on the same dataset. See Figure 1a for an 
overview and Supporting Information Section A.1 for details about 
the training procedure.

2.2  |  Neural network architecture

We develop an ANN that can learn numerical representations of 
eDNA samples by transforming a subset of raw reads into numeri-
cal embeddings that minimize the previously defined triplet loss. 
The raw nucleotide base characters are first converted into spe-
cific numerical values, making them suitable inputs for our neural 
network (see Figure 1b for a simplified overview of our network). 
The first layer then learns short vector representations for each 
nucleotide base. Note that using fixed representations, for ex-
ample one- hot encodings, for the nucleotide bases would also be 
possible, but making them learnable potentially facilitates train-
ing and increases the expressivity of the network. Then, each 
sequence is fed to convolutional layers that accumulate informa-
tion over the entire sequence, and a multi- layer perceptron (also 
known as fully connected layers) combines information from the 
forward and reverse reads into a single representation for each 
sequence. Finally, these sequence representations are passed 
through a stack of multi- head self- attention layers until we re-
trieve a final representation for our full input. These self- attention 
layers allow the model to put more or less weight on different se-
quences or combinations of sequences (e.g. the combined pres-
ence of two species that only co- occur in a specific eDNA sample) 

by processing the sequence embeddings pairwise. Moreover, they 
are invariant to permutations of the input sequences, an advanta-
geous feature considering our focus is solely on the overall species 
composition, rather than the specific order of sequences, which is 
arbitrary. More details about the implementation are provided in 
Supporting Information Section A.2.

2.3  |  Soil and water eDNA datasets

To evaluate the performance of our approach with different types of 
eDNA data, we compared ordination approaches with four different 
empirical eDNA datasets from diverse locations around the globe 
(Figure 2) and with different targeted species. The first dataset con-
sisted of 85 freshwater samples from French Guiana and targeted 
fishes through amplification of the 12S rRNA ‘teleo’ gene fragment. 
The second dataset comprised 98 marine samples collected in the 
Atlantic Ocean around Pointe du Raz (Brittany, France) from 2020 
to 2022 (34 samples in 2020, 30 samples in 2021 and 34 samples 
in 2022). The 12S rRNA ‘teleo’ gene fragment was also amplified 
for this dataset. The third dataset consisted of 180 forest soils col-
lected from nine locations in Switzerland. At each location, soil sam-
ples were obtained from forest reserves (no wood exploitation) and 
adjacent managed forests (where wood is commercially exploited). 
The prokaryotic community was targeted using 16S rRNA V3–V4 
primers. The fourth dataset comprised 200 soil samples collected 
from the Rhone valley around the town of Visp (Switzerland), where 
soils have been exposed to different levels of mercury pollution. The 

F I G U R E  2  Sampling locations of the four eDNA datasets used in this study: Marine samples from Pointe du Raz in Brittany (98 samples), 
freshwater samples from French Guiana (85 samples), forest soils across Switzerland (180 samples from nine locations) and mercury- polluted 
soils from Visp in Switzerland (200 samples). See Figures A5 and A6 in Supporting Information for the exact locations of the Swiss forest and 
Visp samples.
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6  |    SANCHEZ et al.

same 16S rRNA V3–V4 primers were used to assess the prokaryotic 
community. In Supporting Information A, we explain in detail how 
the samples were collected and sequenced, and we describe the 
data processing phases of each dataset.

2.4  |  Principal coordinates analysis baseline

To compare ORDNA with established ordination techniques, we ap-
plied PCoA, a multidimensional scaling method, to each of the data-
sets. Unlike ORDNA, which processes raw sequence data, PCoA 
necessitates first computing a distance matrix that describes the 
compositional differences between eDNA samples and then repre-
senting them in a multidimensional space. The approach applied in 
this study to characterize eDNA sample composition varied across 
the datasets, contingent on the available information about the taxa 
and the environment under study. For the freshwater dataset from 
French Guiana rivers and the marine dataset from Pointe du Raz in 
Brittany, we performed MOTU detection and taxonomic assignment 
using obitools (Boyer et al., 2016). In the case of both soil datasets—
forest soils across Switzerland and mercury- polluted soils in Visp, we 
quantified the ASV counts in each sample using DADA2 (Callahan 
et al., 2016). Subsequently, we employed the Bray–Curtis dissimilar-
ity, as implemented in the ecodist package (Goslee & Urban, 2007) 
in R V4.2.2 (R Core Team, 2024), to generate a distance matrix re-
flecting the relative abundance of taxa or ASVs in each sample. 
PCoAs were computed using the wcmdscale function from the vegan 
package in R (Dixon, 2003), and the first two axes were retained 
for visualization. We used these PCoAs as a benchmark to evaluate 
ORDNA's performance in extracting ecological information from the 
raw eDNA data.

2.5  |  Evaluation of ORDNA and comparison 
with PCoA

The contrastive SSL approach used to learn ORDNA's network 
weights ordinates the samples based on their similarity in raw read 
composition, which depends not only on environmental factors 
but also on the potential biases of the data collection and the in-
trinsic stochasticity of the species captured by eDNA sequencing. 
Therefore, we evaluated ORDNA performances by assessing them 
empirically with the four datasets described previously. We then vis-
ually and numerically compared ORDNA's ordinations obtained from 
these datasets with the ordinations generated by the PCoA baseline 
method. We assigned colours to each sample based on a continuous 
colour wheel centred at the origins of the two methods' ordination 
spaces, where the angle corresponded to the hue, and we reported 
the colours on the geographic map. Next, we calculated the Pearson 
correlation coefficient r between the Euclidean pairwise distances 
of samples in the ORDNA embedding and the pairwise distances in 
the PCoA ordination space.

2.6  |  Comparison of the embeddings and 
associations with spatial and environmental distances

Ordination methods involving dimensional reductions should retain 
relevant ecological information, and thus embedding axes are ex-
pected to correlate with underlying abiotic environmental drivers of 
assemblage composition. For each dataset, we related the composi-
tion distance from ORDNA and the baseline PCoA to geographic dis-
tances, assuming that geographic closeness approximates similarities 
in ecological constraints. First, for each dataset, we computed the ge-
ographic distance between sampled points in terms of Euclidean dis-
tance, except for the French Guiana dataset of freshwater fish, where 
we used distances following river channels. We correlated the dis-
tances between points in the embedding space with those in the geo-
graphic space. Second, we tested the association between embedding 
distances and key environmental parameters related to each dataset. 
For the dataset of freshwater fish, we considered both temperature 
and the distance to the sea as environmental parameters, since the 
environmental parameters of rivers primarily shift from upstream 
to downstream. For the soil datasets from Switzerland, we used soil 
pH. In addition, for the contaminated area around Visp, we used 
soil mercury concentrations. Details on the soil acidity and pollution 
measurements at each sample location are presented in Supporting 
Information A. For the Brittany marine fish dataset, we extracted the 
annual sea surface temperature for each of the sampled sites. For 
both geographic and environmental parameters, we computed the 
Pearson's correlation r between the Euclidean pairwise distances in 
the embedding and either geographic or environmental distances. To 
further evaluate these associations, we performed Mantel tests to as-
sess the statistical significance of the correlation, and reported the 
values on the figures when they were not significant (i.e. >0.01).

2.7  |  Re- projection of sampled points across years

We applied ORDNA to unseen data to evaluate the method's ability 
to relate new samples to previous ones based on a pre- trained em-
bedding. We used the Brittany marine dataset, where eDNA samples 
were collected at the same locations during the years 2020, 2021 
and 2022. We first selected the data for the first year (2020) to learn 
the embedding space and then used the trained model to project 
the samples from the following years (2021 and 2022), which were 
not used for calibration. Since the locations of the sampling points 
did not strictly match across years, we grouped them into four areas 
for the analysis (Figure 2: Pointe du Raz, Audierne Bay [open sea], 
Audierne Bay [coastal area] and South Ar- Men). We investigated 
whether the model trained on the data from 2020 could accurately 
associate the samples collected in 2021 and 2022 with their area 
of origin. We computed the percentage of attributions to the cor-
rect area by the embedding. This allowed us to evaluate ORDNA's 
robustness when ordinating new samples in a pre- configured space 
in order to compare them with earlier samples.
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3  |  RESULTS

3.1  |  Comparison of the structure of ordinations 
obtained with PCoA and ORDNA

We compared the organization of the samples in the ordination and 
geographic spaces between the baseline method (PCoA) and ORDNA. 
The Pearson correlations between the embedding pairwise distances 
of PCoA and ORDNA vary from 0.296 to 0.761, considering the first 
two axes (Table 1). For all datasets except the Brittany dataset, ORDNA 
arranges the samples in a circular pattern. Similarly, PCoA reveals 
a horseshoe pattern in all datasets except the French Guiana one 

(Figure 3; Figures A2, A5 and A6 in Supporting Information). Although 
the structures of the clusters in the embedding space match globally, 
there are discrepancies between the two methods in each dataset. For 
the French Guiana dataset, the ordination generated by ORDNA in 
Figure 3 shows a more gradual transition from the source to the sea for 
the Maroni River, which translates to a lower correlation between the 
two methods' ordinations for this river (0.296 in Table 1). Furthermore, 
for the Maroni River, ORDNA exhibits a distinct separation between 
inland samples and those located nearer to the coastal area, in 
contrast to the PCoA ordination. For the Brittany dataset (Figure A2 
in Supporting Information), the two methods give similar results, 
clustering together samples located in the open sea (i.e. south- west of 

Swiss 
forests Visp

Brittany 
(2021–2022)

French Guiana

Oyapock Maroni

PCoA 0.211 0.027 0.421 0.202 0.397

ORDNA 0.265 0.189 0.509 0.178 0.446

PCoA vs. ORDNA 0.718 0.356 0.533 0.761 0.296

Note: Bold values indicate the approach that yields the highest correlation between embedding 
and geographic pairwise distances. The last row contains the correlation coefficients between 
the embedding distances of the PCoA and the embedding distances of ORDNA. For the Brittany 
dataset, ORDNA trained with data from 2021 and 2022 is compared with PCoA on data from the 
same years. For the French Guiana dataset, we retained only the data sampled from the Oyapock 
River, Maroni River and their tributaries for comparative analysis and calculated geographic 
distances based on the river network.

TA B L E  1  Pearson correlation 
coefficient r between pairwise embedding 
distances from principal coordinates 
analysis (PCoA) and ORDNA, and the 
pairwise geographic distances of the 
sampling locations.

F I G U R E  3  Ordination obtained with principal coordinates analysis (PCoA) on Bray–Curtis distances computed from detected species (a) 
and ORDNA using raw reads (b) for the French Guiana freshwater dataset. The colours of the sample points on the map correspond to their 
positions in the embedding space.

(a) (b)
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8  |    SANCHEZ et al.

Audierne Bay and far south of the Ar- Men area), even though ORDNA 
was trained only with data from 2020 while the PCoA used data 
from all the years. For the soil samples from Swiss forests (Figure A5 
in Supporting Information), both methods distinguish between 
managed and reserve forests as two different clusters for the Sihlwald, 
Fürstenhalde and Combe Biosse locations. Only PCoA distinguishes 
between the managed and reserve forests in the Scatlè location, and 
only ORDNA distinguishes between them in the Josenwald location. 
Finally, for the dataset from Visp (Figure A6 in Supporting Information), 
only ORDNA strongly clusters the samples on the west side of the 
map, downstream of multiple industrial facilities.

3.2  |  Geographic and environmental distances

We evaluated the relationship between the distances among sam-
ple embeddings and their corresponding spatial and environmental 
distances. Our analysis reveals a systematically stronger correla-
tion between the pairwise distances of the embeddings generated 
by ORDNA and the geographic distances (Table 1) compared with 
PCoA, except for one test case involving data from the Oyapock 
River in French Guiana (r value of 0.202 for PCoA and 0.178 for 
ORDNA). For example, the correlation for the Visp dataset is much 
lower for PCoA (0.027) than for ORDNA (0.189). The correlation be-
tween the distances among sample embeddings and environmental 
distances shows more varied signals. In the Visp dataset, ORDNA has 
lower correlations with mercury concentration (ORDNA r = 0.029 
and non- significant Mantel test, PCoA r = 0.179; Figure 4). In the 
Brittany marine fish dataset, ORDNA shows higher correlations 
than PCoA with temperature (ORDNA r = 0.124, PCoA r = 0.067 
and non- significant Mantel test; Figure 4). For the freshwater fish 
dataset from French Guiana, ORDNA also shows higher correlations 
than PCoA with temperature (ORDNA r = 0.219, PCoA r = 0.182; 
Figure 4), but lower correlations with distance to the sea (ORDNA 
r = 0.382, PCoA r = 0.549; Figure A4 in Supporting Information). For 
the Swiss forest soils dataset, PCoA shows higher correlations than 
ORDNA with soil pH (ORDNA r = 0.660, PCoA r = 0.737; Figure 4). To 
summarize, ORDNA embeddings overall have stronger associations 
with geographic distances across the four datasets tested, while 
both ORDNA and PCoA embeddings exhibit varying degrees of en-
vironmental correlations across the different locations.

3.3  |  Robustness of ORDNA

To evaluate the capability of ORDNA, trained on 2020 data, to pro-
ject 2021–2022 samples, we compared the embeddings of the 2021–
2022 samples within the ORDNA space, as illustrated in Figure 5. 
The minimum Euclidean distance between points from the 2021–
2022 samples and points from 2020 for the same area is, on aver-
age, 0.118 for PCoA and 0.139 for ORDNA (Table A1 in Supporting 
Information). PCoA places samples from 2021 to 2022 in the convex 
hull corresponding to the same area in 34.8% of cases (Figure A3 

in Supporting Information), compared with 39.4% for ORDNA. In 
the case of ORDNA, attribution is the highest for the Audierne Bay 
(open sea) and South Ar- Men areas, both at 50%, while the Audierne 
Bay (coastal area) showed the lowest level of attribution, at 10%.

4  |  DISCUSSION

Sequence data from eDNA is rich in information on species com-
position, possibly relative abundance and even intraspecific genetic 
variation (Andres et al., 2023). Therefore, reducing this information 
into species or MOTU composition (Marques et al., 2020; Mathon 
et al., 2021) may be a suboptimal approach for handling this source 
of biodiversity data. Here, we presented a deep learning method lev-
eraging the triplet loss (Ge et al., 2018) to ordinate eDNA metabar-
coding datasets directly from their raw sequence composition. We 
demonstrated the flexibility of our method by applying it to four dis-
tinct datasets, which included various types of environmental sam-
ples from soil, freshwater and marine ecosystems at both regional 
and national scales. Our results indicated that ORDNA produced 
robust embeddings comparable to those obtained with PCoA but 
without the need for any bioinformatic pre- processing. Moreover, 
the organization of the samples in the embedding space adequately 
represented the geography and the environment of these assem-
blages. Hence, our method offers a robust alternative approach to 
previous bioinformatic pipelines for processing the increasing num-
ber of eDNA metabarcoding datasets (Blackman et al., 2024), al-
lowing the extraction of ecological information, which in turn can 
support biodiversity quality assessments and guide management 
strategies (Li et al., 2023).

Bioinformatic pipelines are usually employed to process me-
tabarcoding data from eDNA, by performing quality control mea-
sures, correcting errors, removing contaminants, assembling and 
aligning sequences through dereplication, merging paired reads 
and assigning taxonomic classifications using reference databases 
(Mathon et al., 2021). Consequently, most previous analyses of as-
semblage from eDNA metabarcoding have relied on such processed 
tables (Burian et al., 2021). These pipelines define MOTUs as clus-
ters of sequences or ASVs from which ecological and statistical 
analyses are computed, including ordination techniques (e.g. NMDS 
or PCoA) that support the interpretation of community composi-
tion differences (Polanco Fernández et al., 2021; West et al., 2020). 
Our results indicate that ANNs offer an opportunity to simplify the 
analysis and reduce the number of steps while improving the out-
put. They excel at handling high- dimensional data and can process 
large datasets more efficiently than traditional methods. In addition, 
as eDNA metabarcoding focuses on small markers, which tend to 
perform better than longer ones (Zhang et al., 2020), paired- end 
merging is not required. This allows direct exploitation of the raw 
sequences, eliminating the need for intermediate steps and manual 
intervention. Our analyses show that ORDNA enables the automatic 
extraction of relevant features from raw sequence data to constrain 
sample differences in the embedding space, advancing beyond 
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    |  9SANCHEZ et al.

F I G U R E  4  Comparison between principal coordinates analysis (PCoA) (top row) and ORDination via Deep Neural Algorithm (ORDNA) 
(lower row) ordinations for various measurements. Pearson's correlations are computed between the pairwise Euclidean distance of the 
embeddings and the absolute pairwise difference of the measurement values. Mantel test p- values are indicated when they are greater than 
0.01.

(a) (b)

(c) (d)
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10  |    SANCHEZ et al.

previous applications of deep learning with processed eDNA data 
(Frühe et al., 2021; Lamperti et al., 2023). Here, we focused on a 
two- dimensional ordination of the samples. However, ORDNA can 
be optimized to produce representations of any dimensionality. By 
comparison, ordination methods such as PCoA and NMDS initially 
generate N − 1 dimensions, ordered by their importance, which 
can then be reduced for analysis. Moreover, once trained, ORDNA 
can rapidly process new data from the same ecosystem, making it 
suitable for nearly real- time analysis. The advantage of using raw 
data directly could lead to the discovery of new ecological patterns 
among the samples, providing deeper insights into the underlying 
biodiversity.

The physical characteristics of an area directly influence its cli-
mate, soil, natural resources and ecosystems, all of which shape the 
local environmental conditions (Garibaldi et al., 2014). In this con-
text, ORDNA embeddings showed systematically similar or higher 
correlations with the geographic distances compared with those 
from PCoA. Therefore, ORDNA may be more efficient in extracting 
dissimilarities among assemblages associated with environmental 
gradients when those are linked to environmental distances. For 

example, it generated smoother dissimilarity gradients for the fresh-
water fish dataset from French Guiana than previously mapped ones 
(Flück et al., 2022), and a more spatially organized community struc-
ture in the Visp dataset with mercury- polluted soils. These results 
indicate that the non- linear embeddings of ORDNA enable the ex-
traction of compositional axes that represent geographic dissimilari-
ties well and improve the visualization on a map. Nevertheless, when 
we tested correlations with the environmental variables expected to 
drive composition dissimilarities in each dataset, correlations were 
often stronger with PCoA than with ORDNA. For example, with the 
Swiss forest soils dataset, PCoA showed higher correlations than 
ORDNA with soil pH. This could be explained by ORDNA captur-
ing a change in composition associated with environmental variables 
unmeasured in this study. However, even when directly processing 
highly complex input data without bioinformatic pre- processing, we 
find that ORDNA produces outputs that are at least as informative 
as those from classical approaches.

Ecologists regularly use ecological similarities between samples 
to interpret global change factors that could impact communities 
through comparisons with pristine locations (Philippi et al., 1998). 

F I G U R E  5  Ordination of the Brittany marine dataset (2020, 2021 and 2022) obtained with ORDination via Deep Neural Algorithm 
(ORDNA) trained with data from 2020 (b). Points are grouped into four subregions (South Ar- Men, Pointe du Raz and two in Audierne Bay), 
and their year of sampling is indicated. The reported distances represent the average Euclidean distance between samples from 2021 and 
2022 and the closest sample from 2020.
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    |  11SANCHEZ et al.

Communities diverging from a state of reference would quickly indi-
cate that a disturbance factor is causing a shift in the ecosystem. In 
this context, we demonstrated that ORDNA is effective for rapidly 
projecting new eDNA samples when the ordination model has been 
pre- trained. We demonstrated that the representation produced by 
ORDNA is robust, enabling us to reproject data points from later 
time points into this space. Previous eDNA studies have involved 
using ordination to identify changes in communities. However, due 
to their linear structure and the bioinformatic reduction, such ap-
proaches might have been more limited in detecting signs of change 
appropriately. In our marine dataset from Brittany, we found only 
limited change between the 2 years. This example illustrates the 
ability of our approach to identify trends in the data. In particular, 
the trained embeddings could be directly used to extract relevant 
information from newly collected samples, enabling applications in 
areas such as forensic investigations (Frøslev et al., 2023), ecological 
assessments and pollution monitoring (Hinz et al., 2022).

While the present approach enhances the toolkit for process-
ing eDNA metabarcoding data, it has some limitations that could be 
overcome in future studies leveraging advances in neural networks. 
First, the model training time can be substantial, in particular when 
GPUs are not available, which might limit the application of the 
method for large eDNA datasets. As the dataset size increases, the 
number of possible triplets grows polynomially, making the training 
process more complex. Additionally, ORDNA frequently generated 
a representation that tended towards a circle in the two embedding 
dimensions that emerged. Although providing a definitive explana-
tion would require further experiments, the emergence of a circular 
representation rather than a linear gradient in both dimensions sug-
gests that a single dimension may explain most of the dataset. This 
pattern could, therefore, be an artefact of the network regulariza-
tion. However, it may also facilitate easier detection of the dataset's 
underlying properties compared with PCoA, which exhibits more 
complex behaviour. Indeed, our results may relate to the horseshoe 
pattern or arch effect, observed with PCoA, which is a common ar-
tefact that arises due to a gradient- like structure in the data and non- 
linear relationships inherent in the dataset (Podani & Miklós, 2002). 
This pattern typically occurs when there is a strong underlying gra-
dient or continuous variable influencing the data points, such as in 
ecological data where species composition changes gradually along 
environmental gradients. The aim of ordinations is to preserve pair-
wise distances in a lower- dimensional space, and when the original 
data points lie along a curve in a high- dimensional space, the best 
two- dimensional representation often may result in a curved or bent 
shape. The horseshoe pattern highlights the limitation of PCoA and 
other dimensionality reduction techniques in capturing complex, 
high- dimensional relationships in fewer dimensions, but in this re-
gard, ORDNA only suffers from the same constraints as other or-
dination methods. Finally, evaluating the quality of embeddings in 
comparison with other approaches is non- trivial, and future studies 
should develop approaches to benchmark datasets, as done in other 
machine learning tasks to optimize algorithms, for example in ge-
nomic studies (Luecken et al., 2022).

In the short term, training ORDNA's network with larger datasets 
encompassing diverse locations, taxa, eDNA primers and sequenc-
ing technologies could unify different eDNA data types into a single 
framework. Such a generalized model could ordinate new datasets and 
seamlessly relate them to existing ones, providing a universal tool for 
eDNA data integration and comparison. The flexibility of deep learn-
ing could also be leveraged by integrating additional regularization 
techniques and loss functions to better align the model with specific 
ecological research objectives, such as detecting subtle environmental 
gradients or focusing on specific taxa. Moreover, the embeddings pro-
duced by ORDNA could serve as valuable inputs for other analytical 
methods, enabling complementary analyses that harness the strengths 
of both direct sequence- based embeddings and derived biological in-
terpretations. For instance, these embeddings could be used along-
side other data sources as inputs for deep learning models or classical 
statistical analyses, extending ORDNA's utility beyond ordination to 
tasks, such as predicting biodiversity indicators, species distribution 
modelling and ecological network analysis. Additionally, explainability 
methods in deep learning could be employed to elucidate the simi-
larities and differences between classical bioinformatics pipelines and 
ORDNA. These methods could also be leveraged to identify which as-
pects of the input data have the greatest influence on the ordination, 
offering deeper insights into the key markers of biodiversity.

To conclude, ORDNA is able to ordinate eDNA samples based 
on their read compositions by sub- sampling directly from the de- 
multiplexed raw sequence data. We observed that, by enabling the 
learning of non- linear embeddings, ORDNA's ordination recovers 
contrasts between sites more effectively and leads to better visu-
alization compared with traditional ordination methods. These find-
ings are supported by overall higher correlations between spatial 
and known ecological distances with ORDNA's sample distances 
compared with those retrieved by PCoA. We further demonstrated 
the ability of ORDNA to project points from a newly sampled year, 
that is eDNA samples not seen during training, into the space cal-
ibrated by independently acquired data from a previous year. This 
functionality paves the way for methods to easily detect changes in 
composition over time without the need to continuously fit a model, 
as the inference time of our neural network is negligible, even when 
run on a single CPU. All things considered, its high speed of process-
ing from the sequencer to representations amenable to ecological 
interpretation gives ORDNA the potential to significantly accelerate 
accurate ecological discovery in order to support decision- making in 
conservation and ecosystem management.
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