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Abstract
The genus Harttiella, belonging to the armoured catfish family Loricariidae subfamily Loricariinae (Siluriformes), comprises 
species with narrow geographical ranges, predominantly endemic to river basins in French Guiana and Suriname. Despite 
recent taxonomic advancements, including the description of new species, Harttiella faces conservation challenges due to its 
rarity, limited dispersal capacities, and habitat fragmentation. To elucidate the evolutionary history and aid in conservation 
efforts, we sequenced complete mitochondrial genomes for all known Harttiella species. Our analysis revealed distinctive 
molecular features, including unique stop codon usage and positioning, potentially serving as molecular synapomorphies for 
the genus. Phylogenetic reconstructions supported previous findings and highlighted the complex evolutionary relationships 
within the genus. Furthermore, our study provides foundational genomic resources for developing targeted environmental 
DNA approaches to monitor and conserve Harttiella populations effectively. These findings contribute to a comprehensive 
understanding of Harttiella evolution and inform conservation strategies aimed at preserving this unique group of freshwater 
fish.
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Introduction

The genus Harttiella belongs to the armoured catfish family 
Loricariidae subfamily Loricariinae (Siluriformes). Detailed 
molecular phylogenetic analyses (Covain et  al. 2016) 
recently clarified the relationship of 31 different genera of 
the Loricariinae (vs. Hypoptopomatinae, Hypostominae, 
Lithogeninae, Rhinelepinae), with Harttiella, along with 
two other genera, Harttia and Cteniloricaria, belonging to 
the Harttiini tribe (vs. Loricariini). The genus Harttiella was 
established in 1971 (Boeseman 1971) based on specimens 
from Suriname originally described as Harttia crassicauda 
(Boeseman 1953). More recently, six new species were 
described, all endemic to French Guiana: Harttiella inter-
media, Harttiella janmoli, Harttiella longicauda, Harttiella 

lucifer, Harttiella parva and Harttiella pilosa (Covain et al. 
2012). Additionally, two potentially new species (Harttiella 
n. sp. aff. lucifer and Harttiella n. sp. Makwali) have been 
collected but await formal description.

Harttiella species typically exhibit very limited geo-
graphical ranges, with the exception of H. longicauda, which 
is distributed across four river drainage basins. Most spe-
cies are endemic to a single river basin, occupying only a 
few localities, predominantly found in small perennial forest 
streams at elevations ranging from 120 to 800 meters. These 
species exhibit a preference for specific sandy and rocky bot-
tom microhabitats associated with steep-sloped streams and 
waterfalls, which are spatially constrained within mountain-
ous regions of French Guiana and Suriname. Due to their 
rarity, low fecundity, and limited dispersal capacities, the 
seven formally described species in French Guiana and Suri-
name are considered threatened by the IUCN (Allard et al. 
2017; Ballen 2023a, b, c, d, e, f, g), with four species clas-
sified as Critically Endangered, two species as Endangered, 
and one as Vulnerable.

Our objective is to sequence the complete mitochon-
drial genomes of all Harttiella species. This initiative 
aims to establish a robust phylogenetic framework for the 
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Harttiini tribe, supporting the development of a National 
Action Plan for the conservation of Harttiella species in 
French Guiana. Given that the type species of the genus, 
H. crassicauda, is the sole species known outside of 
French Guiana, determining its phylogenetic position is 
crucial for understanding the regional biogeography of the 
group. Moreover, our phylogenetic framework will enable 
the testing of hypotheses concerning the mechanisms driv-
ing local biodiversity. Specifically, we seek to investigate 
whether the presence of two species in Mont Galbao (H. 
lucifer and Harttiella n. sp. Makwali) results from a dis-
persal event between river basin heads or from the isola-
tion of an ancestral population of H. lucifer in the Makwali 
stream, which is part of the Maroni drainage headwaters 
housing several H. lucifer populations. Additionally, the 
mitochondrial genomes generated in this study will serve 
as foundational resources for future genetic investiga-
tions, facilitating the design and testing of specific prim-
ers for targeted studies, including environmental genomic 
approaches focused on detecting and monitoring Harttiella 
populations.

Materials and methods

Taxonomic sampling. The complete list of Harttiella species 
is provided hereafter (see Table 1 for details and Fig. 1 for 
a map of the sampled localities). It contains seven nominal 
species and two putative undescribed species still awaiting 
formal description. We also included information about their 
conservation status according to the national and interna-
tional Red List evaluation of the IUCN (Allard et al. 2017; 
Ballen 2023a, b, c, d, e, f, g).

Our dataset includes for the first time all the described 
species of Harttiella and one of the two putative species 
pending formal taxonomic description. We also included in 
our dataset representatives of the two other genera present in 
the Harttiini tribe, namely Harttia fowleri and Cteniloricaria 
platystoma. Our dataset thus includes all the genera present 
in the tribe Harttiini.

DNA extraction and sequencing. To provide genomic 
resources for designing species-specific assays, we 
sequenced the complete mitochondrial genomes of all known 
Harttiella species (except Harttiella n. sp. aff. lucifer) as 
well as their closest allies, Harttia and Cteniloricaria. We 

Table 1   List of the species and specimens included in this study

Species Endemic Region Known Localities IUCN Status Specimens Included

Harttiella crassicauda Suriname Nassau Mountains, Paramaka 
Creek (Maroni River tributary)

Endangered MUS221:MHNG2674.051 – Para-
maka Creek, Nassau Mountains, 
Suriname (4.820278, -54.605556)

Harttiella intermedia French Guiana Trinite Mountains (Sinnamary 
basin headwaters)

Critically Endangered MUS651:MHNG2713.087 PARA-
TYPE – Crique Grand Leblond, 
Trinite Mountains (4.60972, 
-53.35917)

Harttiella janmoli French Guiana Kotika Mountains (Maroni River 
basin)

Critically Endangered Ech1:MHNG2695.059 – Montagne 
Kotika (3.95444, -54.18056)

Harttiella longicauda French Guiana Mana, Sinnamary, Approuague, 
Comte/Orapu river basins

Vulnerable HYD15-077 – Bois Bande, Comte 
basin (4.25404, -52.5296); 
GEN5336 – Crique Georges, 
Sinnamary basin (5.09911, 
-53.05293)

Harttiella lucifer French Guiana Mana and Maroni basins (11 sites 
total)

Endangered GEN3760 – Crique Montagne, 
Mana basin (4.712, -53.94666); 
NFV2301 – Crique Nouvelle 
France, Maroni basin (3.631971, 
-53.165539)

Harttiella parva French Guiana Atachi Bakka Mountains (Maroni 
basin)

Critically Endangered MUS612:MHNG2723.093 (PARA-
TYPE) – Atachi Bakka Moun-
tains (3.55, -53.9167)

Harttiella pilosa French Guiana Comte/Orapu basin (2 localities) Critically Endangered PYLB17-042 – Crique Grillon, 
Orapu River (4.28018, -52.4519)

Harttiella n. sp. Makwali French Guiana Mont Galbao (2 sites) Not Evaluated Gal-08-1 – Crique Makwali near 
Mont Galbao, Maroni basin 
(3.60066, -53.29842)

Harttiella n. sp. aff. lucifer French Guiana Mont Itoupe (Oyapock drainage 
basin; 2 sites)

Not Evaluated Not included
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used a genome-skimming approach, as recently performed 
for other fish species (Murienne et al. 2016; Ory et al. 2019; 
Condachou et al. 2024b), which allows us to retrieve the 
high-copy fraction of the genome (e.g., organelle) using 
shallow shotgun sequencing. Total genomic DNA was 
extracted from muscle tissue using the DNeasy Blood and 
Tissue kit (Qiagen, Valencia, CA, USA), following a proto-
col adapted from the manufacturer's instructions. The qual-
ity and quantity of extracted genomic DNA were evaluated 
using a NanoDrop 2000 spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA, USA) and a PicoGreen double-
stranded DNA quantitation assay kit (Life Technologies, 
Carlsbad, CA, USA). Library construction was performed 
using the Illumina TruSeq Nano DNA Sample Prep Kit 
following the supplier’s instructions (Illumina Inc., San 
Diego, CA, USA). After shearing by ultrasonication with a 
Bioruptor pico (Diagenode S.A., Seraing, Belgium), purified 
fragments were A-tailed and ligated to sequencing-indexed 
adapters. Fragments with an insert size of around 450 bp 
were selected with Agencourt Ampure XP beads (Beckman 
Coulter, Inc.), and enriched with 8 cycles of PCR before 
library quantification and validation. The pool of libraries 
was then hybridized on one lane of Illumina HiSeq3000 or 
NovaSeq6000 flow cell using the Illumina TruSeq PE Clus-
ter Kit v.3, and paired-end reads of 150 nucleotides were col-
lected using the Illumina TruSeq SBS Kit v.3 (200 cycles). 
Sequence data were stored on the NG6 platform (Mariette 
et al. 2012).

Mitogenomes analyses. The complete mitochondrial 
genomes were assembled de novo using NOVOplasty 

(Dierckxsens et al. 2017), recursively using the closest rela-
tive as a seed. Assembled mitogenomes were annotated 
using MitoAnnotator (Iwasaki et al. 2013). Ribosomal genes 
were aligned using MAFFT v7 (Katoh and Standley 2013) 
and the Iterative refinement method with local pairwise 
alignment information, with subsequent trimming using tri-
mal 1.4 (Capella-Gutiérrez et al. 2009) with the automated1 
option. Coding genes were aligned using TranslatorX (Abas-
cal et al. 2010) to consider the amino-acid sequence. Indi-
vidual genes were concatenated using FasconcatG (Kück 
and Meusemann 2010; Kück and Longo 2014). We used 
Harttia fowleri and Cteniloricaria platystoma, two members 
of the Harttiini tribe as outgroups. A Maximum Likelihood 
phylogenetic analysis was performed on all thirteen protein-
coding genes and two rRNA using RAxML-ng (Kozlov et al. 
2019) and a GTR+G model was applied for each gene. ML 
tree search was based on ten random and ten parsimony 
starting trees. Nodal support was estimated using Transfer 
Bootstrap Expectation (Lemoine et al. 2018) using an auto-
mated stopping procedure.

As an example of the use of those genomic resources, we 
here provide a depiction of the region targeted by primers 
and probes specifically targeting H. lucifer and Harttiella 
n. sp. Makwali species. The details of the primer design, in 
silico and in vitro testing can be found in (Condachou et al. 
2024a).

Data quality. To check the quality of the assembly, reads 
were mapped in Geneious R9 (Kearse et al. 2012) using the 
low-sensitivity option. We also checked for potential con-
tamination or mislabeling issues by extracting the COI gene 

Fig. 1   Map presenting the 
localities of the samples 
included in this study. Major 
river basins are highlighted 
in color (from West to East): 
purple Maroni, orange Mana, 
blue central, green Approuague 
and yellow Oyapock. Hart-
tiella crassicauda (MUS221), 
H. intermedia (MUS651), H. 
janmoli (Ech1), H. longicauda 
(HYD15-077, GEN5336), H. 
lucifer (NFV2301, GEN3760), 
H. parva (MUS612), H. pilosa 
(PYLB17-042), Harttiella n. sp. 
Makwali (Gal-08-1)
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and using the BOLD identification engine to verify that the 
taxonomic assignation matched our initial identification.

Results

The mean insert size at the library preparation step was 
around 550 base pairs. After sequencing one lane of an Illu-
mina HiSeq3000 or NovaSeq6000 along with other libraries 
(96 libraries per lane), we obtained between four million and 
16 million paired reads per sample. The mitochondrial reads 
were represented by less than 1% of the total reads. After 
remapping the reads in Geneious, the mean coverage ranged 
from 20X for Ech1 (the paratype of Harttiella janmoli pre-
served in formaline) to 280X for Gal08-01 (Harttiella n. sp. 
Makwali). The mitochondrial genomes (Fig. 2) show the 
typical gene arrangement for vertebrates (see Satoh et al. 
2016, for a review of the structure of mitochondrial genomes 
in fishes). Among the nine types of start codon present in 
fish (Satoh et al. 2016), ATG was used predominantly. GTG 
was used exclusively for cox1 and in eight cases for atp8. Of 
the four types of complete stop codons, only TAA and TAG 
were observed in Harttiini. Incomplete stop codons T- was 
found exclusively in nad2, cox2, cox3, nad3 and nad4L.

After concatenating the individual markers, our final 
supermatrix contained 14,056 sites with 2,167 patterns 
distributed over 15 partitions. Our analysis stopped 
after 1,000 bootstrap replicates and yielded a Maximum 

Likelihood tree (Fig. 3) with a LogLikelihood of -44,581. 
The monophyly of Harttiella was highly supported with 
100% bootstrap frequency [BF]. Harttiella lucifer was 
the sister to the remaining Harttiella species (100% BF). 
Harttiella intermedia was nested within the two speci-
mens of H. longicauda. Harttiella pilosa, H. crassi-
cauda, H. janmoli and Harttiella n. sp. Makwali formed 
a monophyletic group supported by high bootstrap fre-
quency (100%). The primers and probes targeting the 
species H. lucifer and Harttiella n. sp. Makwali (Fig. 4) 
show that all the species not targeted have mismatches in 
both primers and probes, highlighting the specificities 
of the developed essays. The datasets generated and ana-
lysed during the current study are available on GenBank 
(https://​www.​ncbi.​nlm.​nih.​gov/) under accession numbers 
PP747111-PP747121.

Discussion

The complete mitochondrial genomes acquired for the tribe 
Harttiini exhibit the typical genome structure observed in 
vertebrates, a pattern largely shared among fish, although 
exceptions have been noted (Satoh et al. 2016). While the 
genome structure and codon usage appear highly con-
served, our analysis revealed two molecular features that 
could serve as molecular synapomorphies for the genus 
Harttiella. Firstly, in the cox1 gene, Harttiella species uti-
lize the TAG stop codon, whereas outgroup species employ 
TAA. Additionally, the stop codon in Harttiella is positioned 
eleven amino acids downstream compared to outgroup spe-
cies. Similarly, in the atp8 gene, the stop codon in Hart-
tiella occurs seven amino acids downstream compared to 
outgroups.

Our phylogenetic tree broadly confirms the topology 
found using a combination of mitochondrial (12S and 16S) 
and nuclear (f-rtn4r) markers (Covain et al. 2016). Hart-
tiella lucifer is a sister to the remaining species. The latter 
split into two groups, one comprising H. longicauda and 
H. intermedia, and a second group with the remaining spe-
cies. Harttiella intermedia presents a phylogenetic position 
nested with the two specimens of H. longicauda. This result 
resonates with previous findings based on cox1 (Covain 
et al. 2012) or based on a combination of mitochondrial and 
nuclear markers (Covain et al. 2016). This is particularly 
troubling as morphometric analyses (Covain et al. 2012) 
showed that the two species are perfectly distinct. As already 
concluded, H. intermedia may have split from H. longicauda 
through a recent vicariant event (Covain et al. 2016) but 
alternative explanations such as morphological plasticity or 
introgression could be plausible.

On a local scale, our phylogenetic framework allows 
investigation of the potential mechanisms responsible for 

Fig. 2   Structure of the 16,472 bp long mitochondrial genome of 
Harttiella lucifer (NFV2301). Ribosomal genes (pink), coding genes 
(blue) and transfer RNAs (brown) are depicted with arrows represent-
ing their position on the L or H strand

https://www.ncbi.nlm.nih.gov/
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the buildup of local biodiversity. In particular, we wanted 
to test whether the two species present in Mont Galbao (H. 
lucifer and Harttiella n. sp. Makwali) could be linked to a 

speciation event as the two species are geographically close 
in the same river drainage. Surprisingly, the two species are 
not phylogenetically closely related, with Harttiella n. sp. 

Fig. 3   Maximum Likelihood 
phylogeny of the Harttiini 
tribe inferred from complete 
mitochondrial genomes using 
RAxML-NG. Bootstrap support 
frequencies are indicated on 
nodes

Fig. 4   Alignment depicting the position of the primers and probes 
designed for the specific detection of Harttiella lucifer (panel a) and 
Harttiella n. sp. Makwali (panel b) (see Condachou et al. 2024a for 

further details). Forward primer in dark green, reverse primer in light 
green and probe in red 
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Makwali sister to H. janmoli and H. lucifer sister to all the 
remaining species of the genus.

The genus Harttiella is currently under particular scru-
tiny and subject to a “National Action Plan”. One “action” 
corresponds to the development of innovative prospection 
methods to obtain a better understanding of the distribution 
of the species and possibly monitor the known populations. 
In this context, environmental DNA appears as a promising 
approach, either targeting multiple species through metabar-
coding or using species-specific approaches such as digital 
PCR (Condachou et al. 2024a). The complete mitochondrial 
genomes analysed in the present study provide meaningful 
genomic resources to develop specific primers and probes 
for further environmental DNA studies.
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