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Species invasiveness and community
invasibility of North American freshwater
fish fauna revealed via trait-based analysis

Guohuan Su 1,2 , Adam Mertel 1, Sébastien Brosse 3 &
Justin M. Calabrese1,4,5

While biological invasions are recognized as a major threat to global biodi-
versity, determining non-native species’ abilities to establish in new areas
(species invasiveness) and the vulnerability of those areas to invasions (com-
munity invasibility) is challenging. Here, we use trait-based analysis to profile
invasive species and quantify the community invasibility for >1,800 North
American freshwater fish communities. We show that, in addition to effects
attributed to propagule pressure caused by human intervention, species with
higher fecundity, longer lifespan and larger size tend to be more invasive.
Community invasibility peaks when the functional distance among native
specieswas high, leaving unoccupied functional space for the establishment of
potential invaders. Our findings illustrate how the functional traits of non-
native species determining their invasiveness, and the functional character-
istics of the invaded community determining its invasibility, may be identified.
Considering those two determinants together will enable better predictions of
invasions.

Freshwater systems are among the most threatened ecosystems and
most of the world’s river basins have been severely altered by human
activities1,2. Among them, habitat fragmentation and non-native fish
introductions are the most pervasive2. In particular, fish introductions
have markedly changed fish community structure and composition in
rivers worldwide3,4. Nevertheless, our ability to predict invasions
remains meager5 considering both non–native species’ invasiveness
(i.e., the capacity of a species to colonize areas where it does not
naturally belong), and native communities’ invasibility (i.e., the vul-
nerability of native communities to non-native species establishment)6

are poorly understood properties.
Invasiveness has frequently been assessed by comparing

functional traits or life history strategies between non-native and
native species from the recipient communities e.g.,7–11. Non-natives
have been reported to belong to higher trophic levels and have

distinct swimming capacities and life-history strategies compared
to natives10–12. For instance, Olden et al.10 revealed that established
non-native fish species exhibited distinct life-history strategies
compared to the native species in the Colorado River basin. Kolar
and Lodge5 also reported that established non-native fishes in the
Great Lakes of North America tended to grow relatively fast, tolerate
wider ranges of temperature and salinity, and have a history of
invasiveness. However, few studies have tested which among these
differential traits actually help a species colonize areas where it
does not naturally occur. In other words, while it is clear that inva-
sive species often feature different traits, the relationship between
functional traits and species invasiveness per se (i.e., whether spe-
cies invasiveness, measured as the number of watersheds where a
species is recorded as non-native, increases/decreases along with
trait values) remains to be explored.
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Moreover, species invasiveness likely interacts with the func-
tional traits of recipient communities13, which could determine
community invasibility—the vulnerability to non-native species
establishment—here measured as the established non-native species
number in each community (i.e., the fish assemblage in each HUC8
watershed)14–17. Two mutually exclusive ecological hypotheses have
been frequently invoked to explain community invasibility. First, the
biotic acceptance hypothesis predicts that the number of successful
invasive species is positively related to native species richness in the
recipient community, as favorable environmental conditions sus-
taining high native species richness should also benefit non-native
species18,19. In contrast, the biotic resistance hypothesis predicts a
negative relationship between native and non-native species rich-
ness, because competitive interactions between native and non-
native species will increase with native species richness, thus
excluding most non-native species14,20. However, neither of these
tw`o hypotheses has consistently explained non-native species
richness in river basins around the world4. Instead, human activities,
which are considered surrogates for propagule pressure and habitat
disturbance, were responsible for increasing non-native species
richness4.

The lack of clear relationships between recipient community
properties and invasibility might stem from the use of taxonomic
diversity metrics such as richness or species identity. Those
metrics may not accurately predict invasibility because the
diversity in species does not predict the diversity of the functions
they support21. In fish communities, most species are functionally
redundant, whereas a few have unique functional traits22,23. Such
functional uniqueness makes the communities and the functions
they support vulnerable to environmental changes, implying that
so-called ecosystem insurance24 is only true for a few redundant
functions. Thus, community invasibility might not be explained
by the diversity of the functions exhibited by a community but
instead by the functional redundancy among species in the focal
community. Communities with functions supported by unique
species should therefore be more vulnerable to invasions than
communities with strong functional packing. In addition, func-
tional relatedness between native and non-native species was also
considered as another important factor that could affect

community invasibility25,26. For instance, Elleouet et al.25 used a
trait-based approach to show that non-native and native species
filled a similar global functional space in the Mediterranean
coastal marine fish fauna.

Our aim was therefore to characterize the functional structure
of communities by considering the range (e.g., functional richness)
and the partitioning (e.g., functional evenness, functional diver-
gence) of functions within each community21,22, as well as the
functional relatedness between native and non-native species.
Understanding whether the functional structure of local commu-
nities and functional similarity (or distinctness) between non-
native and native species affect the invasion process could help
identify whether community invasibility is primarily governed by
biotic acceptance or by biotic resistance. Simultaneously, as human
activities were considered as a non-negligible factor that facilitates
the establishment of non-native species by increasing propagule
pressure4,6, we also tested the ‘human activity’ hypothesis at the
watershed scale in our study. Thus, as the strength of one
mechanism increases, the influence of the other two decreases. For
instance, if propagule pressure plays a major role, we should not
detect a strong pattern of functional traits and structure between
native and invasive species, although invasion success can in some
situations be exacerbated by the pattern of functional traits when
propagule pressure is high [e.g., propagule pressure can ease
invasion by providing species with traits overcoming unusual
conditions (e.g., climatic) in one or a few events]27. Instead, if
functional traits and structure are more important factors, the
influence of propagule pressure will be lower. In this last case, the
functional similarity between non-native and native assemblages,
as well as the functional structure of local communities will con-
stitute important determinants of the invasion process.

Here, we examined how functional trait analysis can unify the
species-centered and community-focused views of the invasion pro-
cess and yield insights into both the invasiveness of particular species,
and the invasibility of recipient communities. We used fish occurrence
data from >1800 watersheds across the United States coupled with 20
fish life-history traits (i.e., morphological, physiological, behavioral) to
compute two distance metrics between non-native and native species
(Fig. 1), and six complementary functional diversity indices for

Fig. 1 | An example showing howcentroid distance (cd) andmeandistance (md)
are computed. The p and q individual native and non-native fish species in a n-
dimensional trait space (here n = 2) are represented by blue and red circles. Vector
Yj represents the position of non-native species j and vector Xj is the position of its
nearest native species. dj is the distance between Xj and Yj.md is the mean distance
between all non-native species and their nearest native neighbors. CX and CY

(triangles) are the centroids of the p native species and q non-native species, with
[CXi] and [CYi] representing the coordinates of the centroids according to all traits,
i.e., [CX1,CX2,…,CXn], [CY1,CY2,…,CYn]. Here,CX = [CXi] andCY = [CYi],whereCXi andCYi

are the mean value of trait i for native and non-native species. cd is the distance
between the centroids for native (CX) and non-native (CY) species.
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recipient fish communities at the watershed level. Our goal is not only
to profile the functional characteristics of non-native established
species, but also to quantify the vulnerability of recipient communities
based on their functional attributes. We therefore expect that besides
the human activities, the invasion risk posed by a non-native species
results from the combination of its own functional attributes and of
the functional characteristics of the recipient community. Our findings
suggest that invasion success is governed by both the functional traits
of non-native species that determine their invasiveness and the func-
tional characteristics of the invaded community that determine its
invasibility, and that considering these two facets together can predict
species invasions more accurately.

Results
Functional difference between native and non-native fishes
Both translocated and exotic species showed different distributions
along most of the 20 functional traits from native species. Moreover,
some of the traits’ average values varied gradually between native,
translocated and exotic species (Fig. S1, S2). Indeed, among the 10
morphological traits, values of maximum body length and relative eye
size gradually increased, while body elongation gradually decreased
fromnative, to translocated, and to exotic species. Among the other 10
ecological and life-historical traits, average values of longevity, percent
of euryhaline species, and percent of diet breadth also increased from
native to translocated and to exotic species. The translocated and
exotic species both showed higher fecundity than the native species
(K-S test, P <0.001). However, parental care for exotic species is sig-
nificantly more frequent than for the native and translocated species
(Chi-square test, P <0.001), while the latter two groups did not differ
(Fig. S1, S2).

Species invasiveness
According to the cross-validation procedure, the boosted regression
trees model (hereafter BRT) explained 42.2% of the total deviance on
species invasiveness. Partial dependency plots in Fig. 2 showed that
fecundity contributed the most (29.2%) to species invasiveness, fol-
lowed by propagule pressure represented by a human use index
(24.1%), and size-related traits (Size_PCA1, 17.5%). Trophic level, diet
breadth, body elongation and temperature related traits (Temp_PCA1)
had a moderate influence, each contributing about 3%-5%. The influ-
ence of the remaining 11 predictors is negligible, together contributing
11.3% (Fig. 2, Fig. S3). Generally, species invasiveness is positively cor-
related to fecundity, the human use index, and diet breadth, while
negatively correlated to body elongation and temperature-related
traits. However, none of these correlations are linear, e.g., species
invasiveness does not change much at first until it increases dramati-
callywhen fecundity exceeds 1000 eggs per female (point log10FCt = 3,
Fig. 2) then stabilizes again over 100,000 eggs per female (point
log10FCt = 5, Fig. 2). The similar type of relationship is also found for
body elongation, Temp_PCA1 and other traits. In contrast, size-related
traits and trophic level showed a non-monotonic correlation to the
invasiveness, with its highest values atmedium-to-high values and then
decreasing slightly thereafter (Fig. 2).

Community invasibility
The BRT model explained 67.9% of the total deviance for the patterns
of community invasibility. Partial dependency plots presented in Fig. 3
show the effect of a particular variable on the invasibility after
accounting for the average effects of all other variables in the model.
Fitted functions by the BRT model were frequently nonlinear and
varied in shape. All variables related to trait-based distance, functional
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Fig. 2 | Results of boosted regression trees showing the partial dependency
between fish species invasiveness and the 12 most influencing predictors. The
value in parentheses in each panel shows the percentage of contribution of each
trait considered in the model. The rugs at the top of each panel show the dis-
tribution of the species along the trait values. FCt fecundity, HUI human use index,
Size_PCA1 first PCA axis of maximum body length, longevity, and mature age, BEl

body elongation, DBt diet breadth, TLl trophic level, Temp_PCA1 first PCA axis of
temperature range, minimum and maximum values, PFv pectoral fin vertical
position, BLs body lateral shape, PCr parental care, OGp Oral gape position, RMl
relative maxillary length. The figure shows the first 12 important predictors in the
model, see Fig. S3 for plots of all predictors.
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structure, environment, and human activities were found to be cor-
related to community invasibility, with relative influence ranging from
16.7% to 2.7% (Fig. 3). Among them, the functional distinctness
between non-native species and native fish assemblages, measured as
the centroid distance between the non-native and native species
assemblages, was the most influential predictor (16.7%) and was
negatively related to community invasibility. Although there would be
mathematical link between community invasibility and cd if native and
non-native species were randomly distributed in the functional space,
most traits values of invasive species are not randomly distributed in
the functional space, and tend to cluster in certain regions (Figs. S1 &
S2, see also case examples on Fig. 4). Thus, despite a potential math-
ematical link between CI and cd, the non-randomness and the clus-
tering of functional traits of non-native species in areas of the
functional space unoccupied by native species makes cd a main pre-
dictor of community invasibility. In contrast, mean functional distance
between non-native species and their nearest neighbors (8.8%) was
positively related to the community invasibility. Functional speciali-
zation (10.5%) was found to be the most influential among the five
functional diversity indices and had a positive influenceon community
invasibility. Overall, the five functional metrics contributed 33% to the
invasibility. As expected, invasibility also increased significantly with
the intensity of human activities on the watershed, and the three
human-related variables (GDP, DOF, HFI) contributed 20.3% to invasi-
bility, with GDP having the greatest impact (11.3%, Fig. 3). All correla-
tions between community invasibility and predictors were non-linear
monotonically decreasing or increasing relationships. For instance,
community invasibility was strongly negatively related to centroid
distance between native and non-native species (cd) values lower than
a threshold (0.12), and then not sensitive to the highest range of cd

values. In the same way, community invasibility increased with
watershed area up to 12,000 km², but then stabilized for larger areas
(Fig. 3). In addition, interactions between the 12 predictors were found
in the BRT model for community invasibility, with centroid distance
having strong interactions with FSpe, NPP, and FOri (Fig. S4). The
three-dimensional surface plots showed that the three pairs of the
most strongly interacting predictors in the BRT model have additive
effects on community invasibility. The highest invasibility values were
found in communities with low centroid distance between native and
non-native species, high functional specialization, high available
energy (NPP), and low functional originality (Fig. S4B–D).

Discussion
Fish functional traits are different between native and non-native
species. Specifically, studies considering morphological differences
between natives and non-natives at the river basin scale showed that
non-native species had larger size and less elongated bodies than the
native counterparts9,28,29. Furthermore, growing evidence suggests
non-native species have different traits than native species within river
basins5,10,11,30. Our regional (watershed) approach over the continental
US revealed that functional traits, including morphological, physiolo-
gical, and life-historical aspects differ between native and non-native
species (including translocated and exotic species), therefore paral-
leling previous studies at both local and global scales.

However, our findings also show that not all of the traits differing
between native and non-native species contribute to the invasiveness
of non-native species. Instead, species’ invasivenesswasonly predicted
by a few traits, among which fecundity and size-related traits are the
most influential. High fecundity is considered as an advantage to
establish and spread in a novel environment, as shown by Koehn31 for
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Fig. 3 | Results of boosted regression trees showing the partial dependency
between fish community invasibility and predictors related to recipient com-
munity functional structure, distancebetween invasive andnativefish species,
environment, andhumanactivities.The value in parentheses in eachpanel shows
the percentageof contribution of eachpredictor considered in themodel. The rugs
in the top of eachpanel show thedistributionof thewatersheds along the predictor

values. cd centroid distance, Area watershed area, GDP gross domestic product,
FSpe functional specialization, NPP net primary productivity, md mean distance,
FDiv functional divergence, FRic functional richness, FOri functional originality,
DOF degree of river fragmentation, HFI human footprint index, FEve functional
evenness.

Article https://doi.org/10.1038/s41467-023-38107-2

Nature Communications |         (2023) 14:2332 4



the common carp (Cyprinus carpio) invasion in Australia. Moreover,
life span and body size are positively linked to the dispersal ability of
the species, and therefore favor the post establishment spread of large
and long-lived species8,29. In addition, large species are often preferred
for aquaculture and angling, which are among the most efficient
pathways of introduction, and generate massive and widespread fish
releases in natural environments32,33 that contribute to the invasiveness
of those species. Notably, our results show that the relationship
between species invasiveness and functional traits is non-linear, sug-
gesting that invasiveness is more like a threshold function of traits and
determined by joint effects of several traits. Intriguingly, our results
also show that top predators with large body size and relatively narrow
diet breadth, are not among the best invaders. Instead, omnivorous
fish with medium-to-large bodies and wide diet breadth appear to be
more invasive. For instance, top predators such as great snakehead
(Channa marulius, exotic) and Muskellunge (Esox masquinongy,
translocated) feeding only on fishes and other aquatic animals, have
been recorded to establish in 1 and 25 watersheds in the US, respec-
tively. In contrast, the common carp (Cyprinus carpio, exotic) and
bluegill sunfish (Lepomis macrochirus, translocated), with a medium-
to-large body andmoderate trophic level but a wide diet breadth, have
been recorded to establish in1126 and 452 watersheds in the US,
respectively.

In contrast, although other traits of non-native species also sig-
nificantly differed from those of native species, their contribution to
species invasiveness remained negligible. This could be explained by
the complexity of the invasive process (including introduction,

establishment, and spread steps, each determined by distinct drivers)
and the variety of factors that might affect invasion success (e.g.,
propagule pressure or temporal dynamics of introduction)26,34,35.
Indeed, our results show that the human use index, employed as a
surrogate for propagule pressure in the model, remains an important
predictor of species invasiveness, suggesting that human interest is a
non-negligible factor in the process of species invasion, especially in
the introduction stage2. In addition, although the distributions ofmost
traits significantly differed between the translocated and exotic spe-
cies (Table S1), the type of invasion (exotic/translocated) had limited
influence on the species invasiveness model, demonstrating that spe-
cies identity or native origin is a poor proxy for invasiveness compared
to functional traits and human interests.

Community invasibility of US watersheds wasmore influenced by
the functional structure of the communities than by human activities.
Nevertheless, the three human-related variables collectively con-
tributed 22.1% in explaining community invasibility, partially sup-
porting the “human activity” hypothesis4 and verifying the significant
impact of propagule pressure. However, since we used human activity
as surrogates of propagule pressure, it remains difficult to discuss the
true effect of propagule pressure. We thus highlight that the level of
economic activity of a given watershed (expressed by the GDP)
strongly affects the community invasibility through a possible increase
in propagule pressure. In contrast, human footprint and the degree of
river fragmentation had surprisingly small effects on community
invasibility, whereas they are often considered to be the major pre-
dictors of the number of non-native species4,36,37. For instance, Su

Fig. 4 | Pattern of non-native fish species in the 1868 watersheds in the US. The
map shows the number of non-native fish species in the 1868 watersheds in the US.
Scatter plots around the map show some examples of the position of native (blue
dots) and non-native (red dots) species in a 2-dimensional functional space. The

number of native and non-native species, and the values of the centroid distance
(cd) and mean distance (md) for each watershed are indicated above each panel.
Watersheds are shown on the inset map in each scatterplot.
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et al.28 revealed that patterns of change in global fish biodiversity were
dominated by the introduction of non-native species in anthropized
areas with high human footprint and intense river fragmentation. Our
regional findings contrast with these global results as we report a
relatively weak influenceof humanactivities on community invasibility
patterns across theUSwatersheds. This inconsistencymight be rooted

in the different spatial scales considered. The watershed spatial scale
used here may have highlighted the role of species interactions within
the communities on invasibility at the expense of some human dis-
turbances that might be better assessed over larger spatial scales.
Besides, at the watershed scale, the measurement of river fragmenta-
tion only accounts for dams located in the focal watershed, while

Fig. 5 | Theoretical representation of the links between the non-native fish
species invasiveness and recipient community invasibility. Non-native species
are characterized by traits promoting invasiveness and by human use for each
species as a proxy for propagule pressure. Combining species traits and propagule
pressure predicts species invasiveness measured as the number of watersheds
where the species established (shown in orange on the maps). Species A, B and C
thus have a low, moderate and high invasiveness, respectively. Meanwhile, species
C also has a high chance to establish in the three recipient communities because its
functional traits locate the species close to the center of the functional space of the
recipient communities (i.e., low centroid distance between non-native species and
native assemblage) and the non-native species traits are not redundant with those

of native species (i.e., high mean distance between native and non-native species).
In contrast, species A and B either located near the boundaries the local functional
space (high centroid distance, species A in Communities 1 and 2) or in crowded
regions of the native functional space (lowmean distance, species B in Community
1) will have low chances to establish, resulting in a low invasiveness for those
species. Native community invasibility is therefore determined by high establish-
mentprobability regions in the functional space containingnoor fewnative species
(darker blue areas). cd centroid distance, md mean distance, FSpe functional spe-
cialization. Note that Species A, B, and C (Thymallus arcticus, Sander vitreus, and
Cyprinus carpio) are real and their invasion patterns are based on actual data.
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hydrologically mediated effects might spread far downstream38,39. Our
findings also tend to support the biotic acceptance hypothesis, which
is verified by the positive correlation between the watershed area (and
thus the native species richness), NPP, and invasibility, therefore
confirming that species-rich native assemblages are not insured
against non-native species establishment. This was verified for water-
shed areas up to 12,000 km², whereas, for larger watersheds, areas are
no longer linked to invasibility, which stays maximal.

More importantly, by considering the functional diversity metrics
of the local community and the trait-based distance metrics between
local andnon-native assemblages,wewereable to shed further light on
themechanisms of community invasibility. The highest invasibilitywas
indeed recorded when native and non-native species pools from a
watershed share the same functional diversity (lower centroid distance
between non-native and native species assemblages than that in other
watersheds), and individual native and non-native species within that
assemblage are not functionally redundant (higher mean distance
between the non-native species and their nearest neighbors than that
in other watersheds). For instance, with similar native species number,
thefishcommunities inwatershedswith less invasive species tended to
have a higher centroid distance and a lowermeandistance, e.g., Caddo
lake, Waiska (Fig. 4). In contrast, the communities in Upper Columbia-
Entiat, San Pablo Bay, Middle Guadalupe, and Mohawk with more
invasive species tended to have a lower centroid distance and a higher
mean distance (Fig. 4). This indicates consistency in the pattern of
most non-native species packing into the center of the native species’
functional space, but keep distance from their native neighbors, which
might avoid competitive interactions that are prone to reduce the
chances of establishment. Although competitive interactions cannot
be properly tested here, field studies on specific communities to test
this hypothesis are warranted. Nevertheless, the observed process can
be viewed as anenvironmentalfiltering effect that increases the overall
functional similarity between native and non-native species pools in
the same watershed (thus resulting in an apparent biotic acceptance
effect). This also explains the low and constant invasibility for higher
centroid distance (cd) values (above a threshold of 0.12) due to non-
native species holding traits falling out of the range of traits of the
native community (see Fig. 5, Species A in Communities 1,2). Then,
among the species that successfully passed the environmental filter,
only those occupying an available functional niche can establish and
not suffer from biotic resistance (see Fig. 5, Species C vs B vs A in
Communities 1,2,3). The interplay between environmental filtering at
the community scale and biotic resistance at the species scale, there-
fore, represents a joint process that may solve the long-standing
debate about the environmental vs biotic determinants of biological
invasions e.g.,4,40. It also gives weight to the doubts raised about the
environmental filtering effect, which often relies on the joint effect of
environment and biotic interactions41,42. We here show that both pro-
cesses act together, but the former at the community level and the
latter at the species level. Thus, communities with a lower density of
species in their functional center will be the most sensitive to inva-
sions, which is confirmed by the positive correlation between com-
munity invasibility and functional specialization. Indeed, functional
specialization represents the proportion of generalist species (i.e.,
species close to the center of the functional space22) in a community,
and high functional specialization indicates that more gaps are avail-
able around the functional center. In contrast, the size of the functional
space (i.e., functional richness) and other metrics representing the
functional structure of assemblages do not facilitate invasions. At least
for the US fish fauna, functional specialization can be considered as a
proxy for vulnerability to non-native species, and it could therefore be
ofmajor interest when designingmanagement actions to avoid further
invasions of the most sensitive watersheds. This is of particular
importance given the current spreadof non-native species throughout
the world, as well as the predicted emergence of new invaders43,44. We

thus implore future studies to evaluate the relevance of the functional
specialization metric as a proxy for invasion vulnerability in other
regions and on other taxa.

To conclude, our study shows the importance of functional traits
in the analysis of species invasiveness and community invasibility. We
confirm that functional differences between native and non-native fish
species exist, but species invasiveness is dominated by only a few
functional traits among them.Our results alsoprovide insights into the
mechanisms promoting community invasibility. Although our findings
tend to support the human activity and biotic acceptance hypotheses,
in essence, community invasibility cannot be simply driven by one of
themor by their joint effect. Instead, the originalmechanismsunveiled
in our study suggest that functional similarity between the non-native
and native species and the local community functional structure are
more influential than human activity and biotic acceptance in shaping
community invasibility patterns. Communities with higher levels of
functional redundancy or denser functional centers would have
stronger resistance to invasive species (i.e., lower invasibility). This
could explain to some extent why the speciose fish communities in the
Amazon river basin, which are highly redundant in functions45,46, have
received few non-native species47. Therefore, we suggest that predic-
tion of biological invasion should comprehensively consider the
invasiveness of non-native species and the invasibility of recipient
communities, as illustrated on Fig. 5, and encourage considering the
interactions between those twoproperties in future studies.Moreover,
based on the performance of the two models, community-level prop-
erties (invasibility) that facilitate invasion appear to be more pre-
dictable than species-level properties (invasiveness), and are therefore
more likely to be informative. Our study also raises a question as to
why most species, whether native or non-native, tend to gather in or
invade the crowded center of the functional space, even if the space
near the border is almost empty. We expect that the distribution of
resources and the relative position of species niches are the key fac-
tors, but further evidence is needed to confirm this.

Methods
Species occurrence data
Native species occurrence records (783 species considered) at the
watershed scale (i.e., Hydrologic Unit Code 8, HUC8) were obtained
through NatureServe (https://www.natureserve.org) and included
both extant and extinct species to account for species historically
present in a givenwatershedbut extirpated as apotential consequence
of various human activities such as species invasions. Occurrence
records of the naturalized or established non-native fish species
(300 species considered) were obtained through the U.S. Geological
Survey (USGS) Non-indigenous Aquatic Species (NAS) database48. Non-
native species data includes exotic species that were historically
absent from the continental US, and translocated species that were
native to the continental US but translocated to watersheds from
which they were historically absent. This dataset only considered the
identified species that locally create self-sustaining populations, thus
we excluded records of non-self-sustaining or eradicated populations,
vagrant species detected in only one sampling occasion, and non-
identified or hybrid species. NatureServe and USGS data provide
comprehensive species lists per watersheds, and have often been used
in previous studies49–52. Watershed average area was
3628.7 ± 2113.2 km². This spatial grain was relevant to investigate spe-
cies invasiveness and community invasibility, because native and non-
native species occurring in each watershed are actually encountering
each other and can thus interact. The 1868 considered watersheds
covermost of the continental US, and belong to 18 river basins. Several
watersheds per basin were thus considered and watersheds are thus
not strictly independent units, but each account for homogeneous
environmental conditions, and ecosystem structure53. We identified
1715 watersheds that have at least one record of a non-native species,
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1556 watersheds that had translocated species (i.e., species that were
native to the continental US but translocated to watersheds from
which they were historically absent), and 1344 watersheds that had
exotic species (i.e., species that were historically absent from the
continental US). The 1868 focal watersheds contain 859 fish species,
including 559 native species that have never been established in other
watersheds, 233 translocated species, and 67 exotic species. Native
and non-native species richness spatial patterns were contrasted, with
the highest native fish richness in the watersheds belonging to the
Mississippi drainage, whereas non-native species richness peaked east
and west of the Mississippi (Figs. 4 and S5).

Predictors used in the invasiveness models
Functional traits. We collected tenmorphological traits related to fish
locomotion and food acquisition and ten additional traits related to
life-history and physiological functions from FISHMORPH database54,
the Fish Traits database for North American freshwater fishes55, and
FishBase56. The ten morphological traits are maximum body length,
body elongation, relative eye size, oral gapeposition, relativemaxillary
length, vertical eye position, body lateral shape, pectoral fin vertical
position, pectoral fin size, and caudal peduncle throttling. Except for
maximumbody length, the other ninemorphological traits are relative
traits that were measured as unitless ratios. The ten additional ecolo-
gical traits are longevity, fecundity, mature age (i.e., age of sexual
maturity), trophic level, temperature range, minimum temperature,
maximum temperature, euryhaline (yes, no), parental care (non-
guarders1: open substratum spawners, non-guarders2: brood hiders,
guarders1: substratum choosers, guarders2: nest spawners, bearers),
and diet breadth (from 1 to 9). See Table S2 for details on the 20
functional traits.

Due to insufficient information on some species, some values
were missing in the raw functional trait data. Overall, 18.1% of the
values were missing in the raw trait dataset of 859 fish species,
and missing values distributed evenly among the native, non-
native, and taxonomic orders (Fig. S6). We statistically imputed
these missing values (NA) with a machine learning algorithm
called ‘missForest’57,58. This method uses a random forest trained
on the observed values of a data matrix to predict the missing
values and automatically calibrates the filling values by a set of
iterations. In the imputation process, after each iteration the
difference between the previous and the new imputed data
matrix is assessed for the continuous and categorical parts, and
the algorithm stops once both differences become larger57. It can
be used to impute continuous and/or categorical data and is not
biased by complex interactions or nonlinear relationships. We
included the evolutionary relationships between species in the
imputation process by including the first ten phylogenetic
eigenvectors in the matrix to be imputed59. We tested the accu-
racy of this method in filling in missing values on a random set of
350 species with complete values for all traits. We randomly
deleted 20% of the values for the 350 species, and then imputed
them with ‘missForest’. We then compared the simulated values
to the actual values, and repeated this procedure 100 times.
Finally, we quantified imputation accuracy by calculating the
Spearman correlation coefficient between the actual and imputed
data, which varied from 0.88 to 0.98. In contrast, the classical
imputation method of filling in missing observations with the
average trait values for the 17 continuous traits of the 80% species
with data, produced average correlation coefficients that ranged
from 0.74 to 0.88, confirming the improved performance of
‘missForest’ (Fig. S7).

Human use index. Besides the functional traits of the fish species, we
applied the human use index as a surrogate in themodels29 to account
for the impact of propagule pressure on species’ invasiveness.

FishBase56 provides four categorical indexes of human use, which refer
to the fisheries, aquaculture, game fish and ornamental importance of
each species. We assumed that each categorical index has an equiva-
lent importance and assigned each index to 0 or 1 for each fish based
on the description (e.g., 0 for never/rarely used, 1 for occasionally/
commonly used). Then, we calculated the sum of the four indexes as
the human use index, which varies between 0 (i.e., for species not used
by human) and 4 (i.e., for species strongly used by human).

Predictors used in the invasibility models
Functional diversity indices. First, we calculated trait dissimilarity
between species pairs in the communities using the Gower pair-
wise distance60. This metric can handle multiple types of data
(e.g., categorical, ordinal, and continuous traits). We then used
principal coordinate analysis (PCoA) to build the functional space
on the first five principal coordinate axes, giving rise to a five-
dimensional functional space that explained over 80% of the total
variance. We removed watersheds with fewer than six species to
meet the criteria for calculating functional diversity indices,
which resulted in 1868 watersheds for the following analyses.
Then we computed six complementary functional indices that are
frequently used in functional diversity studies22,61–63: functional
richness (FRic), functional evenness (FEve), functional divergence
(FDiv), functional dispersion (FDis), functional specialization
(FSpe), and functional originality (FOri). The indices are briefly
defined as the following: FRic—the size (i.e. convex hull) of the
functional space; FEve—the regularity of traits in the functional
space; FDiv—the proportion of species with the most extreme
trait values; FDis—deviation of species trait values from the center
of the functional space; FSpe—the mean distance of a species
from the rest of the species pool; and FOri—the distance between
each species and its nearest neighbor22,64. These six metrics were
used to represent the functional size and structure (measured on
the five-dimensional functional space) of the recipient fish com-
munity in each watershed.

Trait-based distance between non-native and native species. We
computed two metrics to represent the distance between the non-
native species assemblage and recipient community for each water-
shed in the five-dimensional functional space built up by the PCoA,
which thus reflect the degree of functional redundancy between them.
First, the centroid distance (cd) is the distance between the centroids
of non-native and native species assemblages, which reflects the
overall relative positions of the two groups. Second, themeandistance
(md) is the distance between all non-native species and their nearest
native neighbors,which reflects the average position of individual non-
native species relative to their nearest native neighbors. Although the
distance between each non-native species and the rest of the com-
munity (including natives and non-natives) could be measured, it
would require considering the temporal dynamics of invasion in each
watershed, which is not possible because of the lack of temporal data
on non-native species settlement for most watersheds. We, therefore,
considered the non-native species altogether to compute community
invasibility. md and cd were computed for all 1715 watersheds with at
least one non-native species. See Fig. 1 for details about how these two
metrics were calculated.

Environmental and human-related variables. We also included the
variables widely used in testing the three main hypotheses relevant to
community invasibility4. Variables related to biotic acceptance/resis-
tance hypotheses were selected as the native species richness (NSR),
net primary productivity (NPP) and watershed area (Area, km2).

NPP was taken from an online data repository (http://files.ntsg.
umt.edu/), using the mean annual NPP (in gCm−2 yr−1) from 2000 to
2015. Area at the watershed basin scale is used as quantitative
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surrogate for habitat size and heterogeneity, which is known to cor-
relate with native freshwater fish species richness4,65.

Because data on propagule pressure is missing for most
species26,66, it is often assessed using various proxies relating to human
activities4,52,67. We, therefore, used the Gross Domestic Product (GDP)
and human footprint index (HFI) as surrogates for propagule pressure
and establishment risk in the community invasibility models. The HFI
aggregatesmajor roadways, navigablewaterways, railways, crop lands,
pasture lands, the built environment, light pollution, and human
population density. It, therefore, includes population data, dis-
turbance (as anthropized lands), and human and goods exchanges
measured over each watershed. As a complement to GDP and HFI, we
also considered the degree of river fragmentation (DOF) which mea-
sures the degree to which river networks are fragmented long-
itudinally by infrastructure, such as hydropower and irrigation dams1.
This anthropic disturbance is not redundant with the GDP or HFI, and
has a potential important effect on non-native species establishment2.
In addition, these human activities may also indirectly affect invasi-
bility by reducing the abundanceor number of native species, and thus
reduce biotic resistance of the native fauna and ease non-native spe-
cies establishment. We, therefore, considered that the GDP, HFI, and
DOF are the best available surrogates for propagule pressure and
establishment risk.

HFI is a comprehensive representation of anthropogenic
threats to biodiversity. The HFI dataset (resolution: 1 km2) was
taken from68, and for any grid cell, the value can range between
0–50. GDP measures the size of the economy and is defined as the
market value of all final goods and services produced within a
region in a given period. The GDP dataset (in US$, 1 square degree
resolution) was taken from ref. 69. DOF measures the degree to
which river networks are fragmented longitudinally by infra-
structure, such as hydropower and irrigation dams1. The DOF
dataset (resolution: 500m2) was taken from1, and for any grid cell,
the value can range between 0–100. See Table S3 for a statistical
summary of the values of these variables.

If community invasibility is strongly and positively correlated to
NSR, NPP, and Area, the biotic acceptance hypothesis will be sup-
ported. Otherwise, if community invasibility is strongly and negatively
correlated to NSR and Area, the biotic resistance hypothesis will be
supported4.Humanactivity hypothesiswill be supported if community
invasibility is highly correlated to the HFI, GDP, and DOF.

We mapped NPP, HFI, GDP, and DOF by their relative resolution
grid data over the watershed-scale map and then calculated the mean
value of all the cells covered by each watershed using QGIS
version 3.18.

Statistical analysis
We compared the distributions of 20 traits among the three assem-
blages (i.e. native, translocated, and exotic species) via the
Kolmogorov–Smirnov test (hereafter K–S test) for continuous traits
and the Chi-square test for categorical traits.

Since maximum body length, longevity, and age at maturity
are highly correlated (Pearson r > 0.7, Fig. S8A), we used principal
component analysis (PCA) and chose the first PC axis as a com-
bined fish size trait (Size_PCA1), which represents 90.2% of the
total variance (Fig. S8B). Size_PCA1 is positively related to the
three original traits, indicating that a higher Size_PCA1 value
means longer body length, longer longevity, and older age at
maturity. Similarly, we performed a PCA for the three
temperature-related traits and chose the first PC axis
(Temp_PCA1), which represents 75% of the total variance
(Fig. S8C). Temp_PCA1 is positively related to minimal and max-
imal temperature but negatively related to the temperature
range, indicating that a higher value means the species is more
thermophilic but has narrower temperature range. We used the

number of watersheds where a species is recorded as non-native
as a proxy for its invasiveness. Then, we employed boosted
regression trees (BRT) to identify which functional traits or trait
combinations determine species invasiveness. We also included
the type of invasion (i.e., exotic or translocated) and the human
use index in the BRT model to test whether the different cate-
gories of non-native species behaved differently and control for
the influence of propagule pressure. Therefore, 18 predictors
were considered in this BRT model. We applied the methodology
proposed by Elith et al.70 using a BRT model that assumes a
Poisson distribution of the response variable. In addition, a few
species (seven out of 300 species) appeared as outliers due to
extreme traits values. These traits might reflect evolutionary
contingency or erroneous traits measurements, and do not follow
the general patterns of the relationship between species inva-
siveness and fish functional traits. Those species were removed
from the model analysis procedure to avoid an undue influence of
those outliers, make the pattern clearer and optimize results
visualization. We nevertheless compared the results before and
after removing these seven species and got similar patterns,
indicating that the BRT model is robust to extreme values
(Fig. S9). Moreover, we log10-transformed the fecundity trait due
to the wide range of its values to better visualize the relationship
in the figures. The compared results also showed that the BRT
model is robust to the data transformation (Fig. S9).

For the BRTmodels on community invasibility, we first quantified
the correlations among the abovepredictors for themodels and found
that NSR and FDis were highly correlated (Pearson r >0.7, Fig. S10)
with FRic and FSpe, thus we removed NSR and FDis from the following
models.We then computed the establishednon-native species number
in each of the 1868 watersheds as a proxy for community invasibility,
and applied the Poisson BRT model to assess the relative importance
of each of the 12 above-described predictors on the observed invasi-
bility of the watershed-level communities.

The BRT models were fitted using the ‘gbm.step’ function in
‘dismo’ package in R70, which allows for the specification of four
main parameters: bag fraction (bf), learning rate (lr), tree com-
plexity (tc) and the number of trees (nt). bf is the proportion of
samples used at each step, lr is the contribution of each fitted tree
to the final model, tc is the number of nodes of each fitted tree
determining the extent to which statistical interactions were fit-
ted, and nt represents the number of trees corresponding to the
number of boosting iterations. The optimal setting of the para-
meters was chosen using 10-fold cross validation (CV). The pro-
cedure provides a parsimonious estimate, CV—D2 (i.e., the cross
validated proportion of the deviance explained), representing the
expected performance of the model when fitted to new data70.
Using CV, we explored different combinations of the parameters
to be set and retained the optimal model showing the highest CV
—D2. Since the process includes a random or probabilistic com-
ponent, to make to results reproducible and avoid chance, we
reran the models 100 times under a random seed, and then cal-
culated the mean value of relative influence of each predictor and
the proportion value of the deviance explained (D2). In addition,
we estimated the interactions between each pair of predictors in
the community invasibility model to show the interplay of the
mechanisms behind them by using the “gbm.interactions” func-
tion in the “dismo” package70.

As BRT accounts for spatial autocorrelation in neither the
dependent nor predictor variables, we also ran an autoregressive error
(SARerror) model for the community invasibility patterns and com-
pared these results with those of the BRT, to check if spatial auto-
correlation affected the results. We scaled all predictor variables to
have zero mean and unit variance to ensure equal weighting in the
model. Quadratic terms were included in the SARerror model to
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consider non-linear responses. We used ‘poly2nb’ and ‘nb2listw’
functions in ‘spdep’ R package to extract the neighbors list based on
watersheds with contiguous boundaries and constructed the spatial
weights matrix as the spatial constraint in the SARerror model. The
spatial autocorrelation analysis was performed using the ‘spatialreg’
and ‘spdep’ R packages71. We used Nagelkerke’s R-squared72 as the
pseudo R-squared to qualify the SARerror model’s performance. After
model fitting, we checked for broad spatial autocorrelation in model
residuals by computing the Moran’s I statistic73. The results of SARerror

models are provided in the supplementary material (Table S4). The
core drivers identified by the BRT models were confirmed by the
SARerror analysis, suggesting spatial autocorrelation did not have an
important effect on our results.

All statistical analyseswere performedwith R software version 4.174.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the Supplementary information. FISHMORPH is
publicly available through figshare (https://doi.org/10.6084/m9.
figshare.14891412). Fish Traits database for North American fresh-
water fishes can access through https://www.sciencebase.gov/catalog/
item/5a7c6e8ce4b00f54eb2318c0. Additional data and files related to
this paper have been deposited in the Zenodo repository (https://doi.
org/10.5281/zenodo.7802871)75.

Code availability
The code to reproduce all analyses and figures is available on GitHub
(https://github.com/guohuansu/fish-invasion) and Zenodo (https://
doi.org/10.5281/zenodo.7802871)75.
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