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• Rivers are threatened by multiple pres-
sures acting at various spatio-temporal
scales.

• We used a machine learning technique
to assess functional shifts in fish com-
munities.

• Hydromorphological alterations were
more often detected than chemical
ones.

• Models handle linear and non-linear
ecological responses to pressure gradi-
ents.

• Our approach can be used to tackle a va-
riety of conceptual and applied issues.
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In the context of increasing pressure on water bodies, many fish-based indices have been developed to evaluate
the ecological status of rivers. However, most of these indices suffer from several limitations, which hamper the
capacity of water managers to select the most appropriate measures of restoration. Those limitations include:
(i) being dependent on reference conditions, (ii) not satisfactorily handling complex and non-linear biological re-
sponses to pressure gradients, and (iii) being unable to identify specific risks of stream degradation in a multi-
pressure context. To tackle those issues, we developed a diagnosis-based approach using Random Forest models
to predict the impairment probabilities of river fish communities by 28 pressure categories (chemical,
hydromorphological and biological). In addition, the database includes the abundances of 72 fish species col-
lected from 1527 sites in France, sampled between 2005 and 2015; and fish taxonomic and biological informa-
tion. Twenty random forest models provided at least good performances when evaluating impairment
probabilities of fish communities by those pressures. The best performing models indicated that fish communi-
ties were impacted, on average, by 7.34 ± 0.03 abiotic pressure categories (mean ± SE), and that
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hydromorphological alterations (5.27±0.02)weremore often detected than chemical ones (2.06±0.02). These
models showed that alterations in longitudinal continuity, and contaminations by Polycyclic Aromatic Hydrocar-
bonswere respectively themost frequent hydromorphological and chemical pressure categories in French rivers.
This approach has also efficiently detected the functional impact of invasive alien species. Identifying and ranking
the impacts of multiple anthropogenic pressures that trigger functional shifts in river biological communities is
essential for managers to prioritize actions and to implement appropriate restoration programmes. Actually im-
plemented in an R package, this approach has the capacity to detect a variety of impairments, resulting in an ef-
ficient assessment of ecological risks across various spatial and temporal scales.

© 2020 Elsevier B.V. All rights reserved.
Invasive alien species
Water chemistry
1. Introduction

By the second half of the twentieth century, the international commu-
nity substantiatedwater-related issues, and started to evaluate the ecolog-
ical status of surface and ground waters (Cooley et al., 2013). The
assessment of this ecological status has been based on the monitoring of
biological quality elements (BQEs; i.e., fishes, benthic invertebrates,
phytobenthos, macrophytes, phytoplankton) and of supporting environ-
mental conditions (e.g. physico-chemical and hydromorphological param-
eters). Reaching the “good” ecological status for all the water bodies has
then been the overarching goal of many environmental legislations and
water policies worldwide, including the Water Framework Directive in
Europe (WFD; EC, 2000). This objective has required to (I) evaluate the
ecological status of water bodies, (II) identify the potential causes of devi-
ation from the “good” status by considering multiple anthropogenic
pressure categories and (III) implement appropriate monitoring, manage-
ment and restoration programmes. This challenging goal has stimulated a
flourishing scientific literature, which aims at designing biotic indices ca-
pable of translating river conditions into simple measures summarizing
the complexity of ecosystems. For instance, Birk et al. (2012) provided
an overview of about three hundred methods based on the main BQEs to
implement theWFD. Yet, a recent report from the European Environment
Agency indicated that only 40% of surface waters were at least in “good”
ecological status (EEA, 2018) suggesting that if step I is fulfilled for most
of the EU members, steps II and III require further collective efforts.

In the context of stream BQE-based evaluation, fish communities
have received particular attention, probably because they offer several
advantages. They are widely distributed in lotic ecosystems. They are
relatively easy to identify at the species level and a substantial but
scattered amount of information is available on their functional and
life history characteristics. Their potential number of species is limited
in Europe (b250 species). They exhibit longer lifespan compared to
other BQEs, integrating environmental changes over longer periods.
Last, they are sensitive to biological (Gallardo et al., 2016; Sagouis
et al., 2015), physico-chemical and hydromorphological pressures
(Azimi and Rocher, 2016; Schinegger et al., 2012). In particular, weirs
and dams are severely impairing fish assemblages (Branco et al., 2014;
Mims and Olden, 2013), diadromous species (Drouineau et al., 2018;
Fuller et al., 2015; Lasne et al., 2015), native fish species (Meador and
Carlisle, 2012), and their environment via habitatmodifications and dis-
ruption in the ecological continuity of rivers, at both local and large spa-
tial scales (Ali et al., 2019; Kuriqi et al., 2019). To move efficiently
beyond the mere assessment of ecological status (step I), fish-based in-
dices present, however, at least one of three limitations that need to be
overcome.

1) Fish-based indices must rely upon the debated notion of reference
conditions, which are often difficult to evaluate and an unrealistic
target for the management of heavily modified water bodies
(Dufour and Piégay, 2009; Tweedley et al., 2017).

2) Despite growing evidence that fish communities may exhibit non-
linear responses to pressure gradients (Taylor et al., 2014), most
fish-based indices assume linear relationships (but see Bhagat
et al., 2007).
3) Fish-based indices are unable to identify specific risks of stream deg-
radation in amulti-pressure context and to disentangle the effects of
co-occurring pressures acting across various spatial and temporal
scales (Reyjol et al., 2014). This tremendously limits the capacity of
water managers to opt for the most relevant restoration measures,
for a given water body.

To overcome these limitations, we here developed a robust and
flexible diagnosis-based approach, able to identify individual pres-
sures involved in fish community impairment under multiple
pressure scenarios. This approach has been grounded upon the
fundamental notion that functional species traits - the physiologi-
cal, morphological and behavioural characteristics of organisms -
integrate the spatial and temporal variability of the environment
(Southwood, 1977; Townsend and Hildrew, 1994). Various natural
environmental filters, acting at different nested scales from
ecoregions to reaches, filter functional traits. Anthropogenic pres-
sures are then able to modify this environmental filtering, leading
to different combinations of traits that are often specific to a
given pressure category (Desrosiers et al., 2019). Hence, according
to our hypothesis, substantial modifications in the relative fre-
quencies of a large set of functional traits (i.e. biological metrics)
within communities should specifically reflect biological responses
to one or more environmental pressures.

Random forest (RF) models have been successfully applied in many
environmental and ecological studies including - but not limited to - air
quality modeling (Choubin et al., 2020), flood susceptibility assessment
(Hosseini et al., 2020), groundwater nitrate modeling (Rahmati et al.,
2019), earth fissure modeling (Choubin et al., 2019), risk assessment
for invasive species (Keller et al., 2011; Philibert et al., 2011), and stream
impairment modeling under multi-pressure scenario (Larras et al.,
2017;Mondy andUsseglio-Polatera, 2013). The advantage of RFmodels,
over other uni- and multi-variate methods, is their ability to handle
non-linear relationships between predictors and response variables, to
integrate complex interactions among a large number of predictors
and to generate good predictions with their associated probabilities
(Prasad et al., 2006; Rahmati et al., 2019). The proposed diagnosis-
based approach is a generalization of the use of RF models to estimate
probabilities of community impairments, in a multi-pressure context,
using complex combinations of taxonomic and biological metrics. We
tested this flexible approachwith river fish communities by: 1) compil-
ing fish functional traits sensu stricto and any relevant information on
how fish assemblages may interact with their environment (e.g. func-
tional guilds, life history strategies, taxonomic structure), 2) identifying
and describing abiotic and biotic pressure categories towhich fishes are
potentially sensitive at various spatial and temporal scales, and 3) using
RF models to calculate probabilities of community impairment by any
given pressure category. Based on fish communities, this study aims at
demonstrating the efficiency of the flexible diagnosis-based approach
for enhancing our understanding of shifts in ecosystem structure and
functions triggered by given levels of various anthropogenic pressures
(step II), and for facilitating decision-making processes by environmen-
tal managers (step III).
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2. Material & methods

2.1. Fish and environmental data

This approach is based on three large datasets gathering information
on i) the spatial and temporal distribution of French stream fish com-
munities (“Fish record dataset”), ii) the taxonomic, biological, and eco-
logical characteristics of fish species (“Fish characteristic dataset”),
and iii) the levels of chemical, hydromorphological, and biological pres-
sures impairing sites at each sampling event (“Pressure dataset”).

The Fish record dataset contains electrofishing samples performed
from 2005 to 2015 in 1527 sites belonging to the French Water Frame-
work Directive's surveillance monitoring, covering themainland France
(c.a. 550,000 km2). The standardized electrofishing protocol followed
the recommendations of the European Committee for Standardisation's
standard (CEN, 2003; Marzin et al., 2014). This protocol was conducted
during low-flow periods (fromMay to October) with a sampling design
that depended on river width and depth. Fishes were identified to the
species level, counted and then released back into the river. On average,
the sites were sampled 5.5 ± 0.1 times (Mean ± SE; min = 1; max =
11) over the 2005–2015 period. The Fish record dataset was thus com-
posed of the abundances of 72 fish species distributed in 8529 sampling
events (site x year; Table A).

The Fish characteristic dataset gathered information about 56 fish
characteristics (260 categories) compiled from different sources of in-
formation (Table B). Hereafter, we considered ‘fish characteristics’ as
any descriptive information related to the physiology, morphology
and behaviour (i.e. functional traits sensu stricto; N = 53), life history
strategy (lifespan; N = 1), and taxonomy (family and order levels; N
= 2) of fish. Fifty-five fish characteristics were coded using a full dis-
junctive system (i.e. presence/absence of various categories). One fish
characteristic was structured using a fuzzy-coding technique (‘food’;
Table B). The number of categories defined per characteristicwas rather
low (between 2 and 10), except for the characteristics related to taxo-
nomic classification (N = 20 families/categories; N = 13 orders/
categories).

The Fish record and Fish characteristic datasets were then used to
calculate 1576metrics for each of 8529fish sampling events. Thesemet-
rics covered: (i) the relative frequency of the log-transformed abun-
dances of organisms using each of the 260 categories belonging to the
56 fish characteristics (260 metrics), (ii) taxonomy-based diversity in-
dices calculated at the scale of each trait category (e.g. the proportion
of piscivorous taxa, the Shannon diversity of rheophiles; 1255 metrics),
(iii) Rao functional diversity indices calculated at the scale of each char-
acteristic (Rao, 1982; 56 metrics), (iv) the level of diet specialization
(Mondy and Usseglio-Polatera, 2014; one metric) and (v) taxonomy-
based richness or diversity indices (e.g. the species richness, the Shan-
non diversity index; four metrics; Table B).

The Pressure dataset was obtained by defining 28 pressure catego-
ries that describe the impairment of water quality (WQ: chemistry; 13
categories; 188 individual parameters taken into account; Table C),
the impairment of habitat (HD: hydromorphology; 14 categories; 29 in-
dividual parameters; Table D), and the contamination of local fish as-
semblages by invasive alien species (IAS: 1 category; 1 individual
parameter; Table A), at each site for each sampling date. These pressure
categories were selected and defined according to available information
and their potential relevance for fish communities. Each pressure cate-
gory was defined by one to several individual parameters, each of
which was described by two pressure levels (“low” vs. “significant”).
Then, the pressure level allocated to a given site for a given pressure cat-
egory was the worst pressure level over all the individual parameters
taken into account for characterizing this pressure category
(i.e., following the “one out, all out” aggregation rule; Gottardo et al.,
2011).

For parameters related to WQ pressure categories, pressure levels
were assessed by comparing the mean value of individual parameters
over a given period with the “good/moderate” quality class boundary
of the French water quality assessment system (i.e. SEQ-Eau V2.0;
Oudin and Maupas, 2003), allowing to distinguish “low” (high/good)
from “significant” (moderate/poor/bad) pressure levels. Four of the 14
HD pressure categories were defined according to the literature (i.e.
‘Transportation facilities, ‘Urbanization’, ‘Hydrological instability’,
‘Straightening’; Larras et al., 2017; Mondy et al., 2012; Mondy and
Usseglio-Polatera, 2013; Villeneuve et al., 2015),whereas the remaining
categories and associated parameters were newly described in this
study after preliminary tests to define the low-significant boundaries
of pressure levels (Table D). For the IAS pressure category, we have con-
sidered as “significant” the effect of the presence of at least one invasive
alien species in the fish assemblage. The list of invasive alien species, in-
cluding 17 species, was established by combining the information from
three data sources: the French National Museum of Natural History, the
IUCN Red list of threatened species in France (those considered as “alien
species”) and Fishbase (those considered as “Potential pest”) (more de-
tails in Table A). We used the Cohen's kappa coefficient to assess non-
random co-occurrences of pressure categories; i.e., after removing ran-
dom co-occurrences (“low” vs. “significant”; psych-package in R).

2.2. Random forest models

Random forests (RF) are a particular type of machine learning
methods able to investigate complex and potentially non-linear rela-
tionships (Breiman, 2001). Although several other types of machine
learning methods exist (k-nearest neighbour, support vector ma-
chine), RF models were selected here because they can handle a
large number of predictive variables. The importance of the contri-
bution of those predictors to model outputs (probabilities) can be
easily quantified. Moreover, RF models provide good predictive per-
formances (Rahmati et al., 2019). One RF model was built per pres-
sure category taking the pressure level (“low” vs. “significant”) as
the response variable and the fish metrics as the predictive variables.
We tested five periods (from one to five years before fish sampling)
to identify the most likely integration time of fish communities re-
garding WQ for two reasons: fish have potentially long life cycles
(from one year to several decades) and the water samples (taken
for chemical analyses) are punctual (i.e., several times a year) and
were not necessarily obtained the same day as fish samples. Since
all the HD pressures were defined once for the period covered by
fish sampling, we did not test several integration periods as we did
for WQ pressures. The period yielding the best model performance
(see below) was selected independently for each WQ pressure.
Among all the pressures, the one induced by the invasive alien spe-
cies is particular because it is the only biotic pressure where a subset
of the fish assemblage (IAS) may impact the other subset (native
species). To this end, the associated RF model was built differently.
All the fish metrics were calculated again without the invasive
alien species (predictive variables) while the presence (=“signifi-
cant pressure”) versus absence (=“low pressure”) of invasive alien
species was considered as the response variable. Although the
ecodiag-package presented in this study offers ways to tune RF
models and can easily be used in a cross-validation procedure, we
have only presented the results of models parametrized following
published strategies (e.g., 1500 classification trees, random selection
of 50 fish metrics at each node in individual trees; (Larras et al.,
2017). Based on the fish metric values, each pressure-specific
model therefore provided, for each sampling event (n = 8529), a
mean impairment probability calculated over all the trees defining
a given forest. In order to identify pressure syndromes (i.e. combina-
tions of pressures often impairing fish communities) over the entire
studied area (mainland France), we also performed a Principal Com-
ponent Analysis (PCA) on the impairment probabilities predicted by
the abiotic and biotic models exhibiting at least “good” perfor-
mances, considering all the 8529 sampling events.
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2.3. Model performances

To assess model performances, each RF model was built on a learn-
ing dataset and then tested against a test dataset (Larras et al., 2017;
Mondy and Usseglio-Polatera, 2013). Learning and test datasets
corresponded to independent subsamples of the input database,
i.e., the metric and pressure data measured for all the sampling events.
To take into account the temporal correlations among sampling events,
the sites were randomly allocated either to the learning or to the test
dataset (75% and 25% of the sites, respectively). Model performance
was then evaluated with the Area Under the Curve (AUC). The AUC
values indicate “good” model performances if they are equal to or
higher than 0.70 (i.e., maximizing both sensitivity and specificity;
Pearce and Ferrier, 2000). We used this AUC criterion to assess model
performances using mainly the test (AUCtest) datasets, and to a lower
extent the learning (AUClearn) one. Evaluating both AUCtest and AUClearn
represent a trade-off to minimize prediction errors in test datasets and
to avoid over-fitting in learning datasets. We then investigated spatial
and temporal changes in RFmodel outputs (i.e., impairment probability
by any given pressure) using models with the best performances.

2.4. Metric importance and ecological validation

Our approach is based upon the assumption that community re-
sponses to environmental pressures manifest through changes in the
relative utilization frequency of functional traits (trait-based metrics).
Trait-based metrics may not contribute equally, however, to this com-
munity response. To our knowledge, there are currently eight methods
that can evaluate the importance of each fish-based metric in the com-
munity response to each pressure category (i.e., RF model output):
“anova.test”, “auc”, “chi.squared”, “gain.ratio”, “information.gain”,
Table 1
List of pressure categories and associated codes, integration period (for chemical pressures only
description), and AUC ofmodels built on the learning datasets (AUClearn) and tested against new
individual models are sorted in decreasing order of AUCtest. Shades of grey denote model perfo

Code Pressure category
Chemical:
WQ03 Nitrates

WQ02 Nitrogen compounds (except nitra

WQ04 Phosphorous compounds

WQ01 Organic matter

WQ06 Fungicides

WQ05 Suspended particles

WQ12 PCB

WQ09 PAH

WQ11 Insecticides

WQ08 Herbicides

WQ10 Organic micropollutants (other)

WQ07 Mineral micropollutants

Hydromorphological:
HD12 Longitudinal continuity

HD10 Stream width

HD01 Transportation facilities

HD08 Flow types

HD04 Clogging risk

HD09 Sediments

HD07 Catchment anthropization

HD05 Hydrological instability

HD13 Lateral continuity

HD14 Proximal continuity

HD11 Stream depth

HD02 Riverine vegetation

HD03 Urbanization

HD06 Straightening

Biological:
IAS Invasive alien species
“kruskal.test”, “ranger.impurity”, and “ranger.permutation”. Those
methods rank metrics from the most to the least important metric in
each RF model. Since those methods may provide different ranking
values for a given metric, the ranks provided by each method were
first scaled in the range [0,1], and then averaged across all the methods
(Congalton, 1991). This mean scaled rank was considered as the final
measure of metric importance. The ecological validation of our ap-
proach was then performed by investigating the relationship between
the fish metric values and the impairment probabilities generated by
each RF model. This relationship was illustrated for the most important
metrics (based on their mean scaled ranks) and the most accurate abi-
otic and biotic models (AUC N 0.7). The strength of those relationships
was assessed using non-parametric Spearman correlations. The
diagnosis-based approach was implemented in the ecodiag-package in
R (R Core Team, 2018) and is currently hosted on GitHub (Table E).

3. Results

3.1. Model performances

The integration period over which the WQ pressures were assessed
had a pressure-dependent effect on the performances of the corre-
sponding RF models and varied from three to five years (Table 1;
Table F). For example, the best model performances were obtained
using an integration period of three years for “Nitrogen compounds”
whereas they were obtained using an integration period of five years
for “Phosphorous compounds”. Due to an insufficient amount of data
corresponding to significantly impaired conditions regarding “Acidifica-
tion”, this WQ pressure was discarded from further analyses.

All theHD,WQ and IASmodels had AUClearn values higher than 0.75,
except for “Mineral micropollutants” (AUClearn = 0.67; Table 1). In
; expressed in number of years - before sampling events - taken into account for pressure
data (AUCtest).Within hydromorphological (HD) and chemical (WQ) pressure categories,
rmances: dark grey = at least “good”; light grey = “fair”; blank = “poor”.

Year AUCtrain AUCtest

4 0.914 0.878

tes) 3 0.897 0.871

5 0.896 0.849

4 0.894 0.847

5 0.825 0.789

5 0.803 0.766

3 0.774 0.760

4 0.778 0.748

3 0.745 0.719

5 0.767 0.678

5 0.792 0.655

3 0.674 0.637

- 0.924 0.858

- 0.895 0.852

- 0.896 0.819

- 0.925 0.787

- 0.861 0.774

- 0.863 0.761

- 0.854 0.755

- 0.861 0.748

- 0.851 0.728

- 0.852 0.703

- 0.852 0.696

- 0.857 0.694

- 0.820 0.613

- 0.805 0.597

- 0.897 0.893
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contrast, some models exhibited “poor” (four models) or only “fair”
(three models) performances with the test dataset. Most of themodels,
however, displayed good performances with both the learning and test
datasets (AUC N 0.70; HD: 10/14; WQ: 9/12; IAS: 1/1), resulting in
clearly distinct distributions of impairment probabilities across pressure
levels (Fig. A). For the 19 abiotic models, we found no significant differ-
ences in AUCtest between the ten HD and the nineWQ pressure catego-
ries (Wilcoxon rank sum test:W=55.5, p-value= 0.41; similar results
were obtained with AUClearn: W = 29.5, p = 0.22).

3.2. Impairment probabilities across spatial scales

The proposed diagnosis-based approach applied tofish communities
allowed us to investigate pressure patterns at different spatial scales. At
a large spatial scale (mainland France), the RF models identified the
hydromorphological pressures as the most frequently significant pres-
sures (from 26 to 81% of the sampling events) detected at any given
site compared to water quality pressures (mainly from 8 to 22%; except
for “Nitrates” [48%] and “PAH” [54%]) or invasive alien species pressure
(43% of the sampling events; Fig. 1A). Overall, RF models predicted that
a given sampling event was significantly impacted, on average, by 5.27
± 0.02 HD (min. = 0, max. = 10) and 2.06± 0.02WQ (min.= 0, max.
= 9) pressure types (impairment probabilities N 0.50). The first two
PCAaxes explained 50%of the total variance in impairment probabilities
(Fig. 1B). The first axis discriminated two hydromorphological pres-
sures related to the river continuity (HD12 = ‘Longitudinal continuity’;
HD14= ‘Proximal continuity’; negatively correlated to Axis 1) from all
the other pressure categories (more or less positively correlated to Axis
1). The second axis separated the two broad types of pressure categories
with most of the HD and WQ pressure impairment probabilities being,
respectively, positively (except HD07) and negatively (except WQ9
and WQ11) correlated to this axis (Fig. 1B). The IAS pressure was posi-
tively – but lowly - correlated to the first PCA axis. Note that overall the
non-random co-occurrence of pressure categories (RF models' inputs)
was very low (mean Cohen's Kappa coefficient = 0.07 ± 0.01) except
for 11 of the 190 pairs of pressures (Table G).

The proposed diagnosis-based approach also highlighted broad spa-
tial patterns in stream degradation. For each site and each of four
Fig. 1. A/ Relative proportions of sampling events with impairment probabilities higher (blac
quality (WQ), and biological (IAS) models with AUCtest N 0.7; B/ Principal Component Analys
(dashed lines and triangles) and WQ (solid lines and circles) pressure categories (n = 8529 sa
first principal components. Due to the particularity of the IAS model (see Material and M
multivariate space (as a supplementary variable) and correlations recalculated (dotted line an
pressure categories, impairment probabilities were averaged across
sampling events (over the 2005–2015 period) to remove the temporal
effect in the data, and then plotted on amap displaying themain French
drainage basins (Fig. 2). We provided this spatial distribution of impair-
ment probabilities for the two HD and WQ models exhibiting the
highest performances. The regional patterns of impairment probabili-
ties were different among pressure categories. The risk of fish commu-
nity impairment by ‘Longitudinal continuity’ alteration was lower
(mean impairment probability b 0.50) for rivers located near the Atlan-
tic and Mediterranean coasts, than those located further inland
(Fig. 2A). The effects of modifications in ‘Stream width’, a proxy of
stream channeling and bank modifications, on fish communities, were
the most important in sites located on the main large rivers (the Loire,
the Rhone, the Seine, and the Adour-Garonne rivers; Fig. 2B) and their
lowland tributaries. In addition, ‘Nitrates’ and ‘Nitrogen compounds’
(other than nitrates) exhibited contrasting impairment patterns: the
former had a pronounced, large-scale impact in the northwestern part
of France, and to a lower extent, in the Adour-Garonne basin (South-
west; Fig. 2C)whereas the latter had rather local effects on communities
and mainly in areas exhibiting the most intensive agricultural activity
(Fig. 2D). The impact of invasive alien species on native fish assem-
blages, was also themost important in sites located onmain large rivers
(the Loire, the Rhone, the Adour-Garonne, and to a lower extent, the
Seine rivers) and their lowland tributaries (Fig. B). Finally, we assessed
the global impairment probability of the whole fish communities (in-
cluding native and invasive alien species) over the decade, by averaging
the impairment probabilities of the 19 HD andWQmodels with at least
good performances (AUCtest N 0.70; Table 1). Least impacted sites were
mainly locatedwithin or near themainmountain ranges (e.g., Pyrenees,
Alps, Massif Central mountains, and to a lower extent the Vosges, and
Jura mountains; Fig. 2E).

3.3. Impairment probabilities across temporal scales

This approach has also allowed assessing broad temporal patterns in
stream degradation at large spatial scale. Fig. 3 depicts changes in the
distribution of impairment probabilities at all the sites sampled in
both 2005 and 2015 (n = 543). These trends showed pressure-
k bars; “significant” impact) than 0.5 for each of the 20 hydromorphological (HD), water
is performed on impairment probabilities from the 19 models corresponding to the HD
mpling events). Correlations of the probabilities provided by the 19 models with the two
ethod section), associated impairment probabilities were projected onto the existing
d square). See Table 1 for the list of codes and labels.



Fig. 2. Time-integrated map of fish assemblage impairment probabilities (IP) at each of the 1527 sites. For each site, IPs were averaged across sampling events for the two
hydromorphological (A/ and B/), and chemical (C/ and D/) pressure categories corresponding to RF models with the highest AUCtest. In E/ a mean IP was calculated for each site by
averaging IPs across the 19 HD and WQ pressure categories with AUCtest N 0.70 and over the 2005–2015 period. Lines and shaded areas on maps represent the boundaries of drainage
basins (B1 = Adour-Garonne; B2 = Loire; B3 = Seine; B4 = Escaut-Somme; B5 = Meuse; B6 = Rhine; B7 = Rhone; B8 = Corse) and the locations of mountain ranges (M1 =
Pyrenees; M2 = Massif Central; M3 = Alps; M4 = Jura mountains; M5 = Vosges), respectively. Panels A-D are on a different color scale (presented in panel A) compared to panel E.
The locations of Site A and B are indicated (cf. Fig. 4).
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specific patterns. Therewas only a significant decreasing risk of commu-
nity impairment due to ‘Nitrogen compounds’ and to ‘Phosphorous
compounds’ in 2015 compared to 2005 (Wilcoxon sign-rank test for
paired data = 9.5 104 and 1.0 105, both p-values b 0.0001, respectively;
Fig. 3D and F). Differences in the total impairment probabilities (i.e.
mean impairment probabilities of the 19 HD and WQ models with
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AUCtest N 0.70; Table 1) between 2005 and 2015, tended to decrease, in-
dicating a weak improvement in overall site condition over the decade
(Wilcoxon sign-rank test for paired data = 1.0 105, p-value b 0.0001;
Fig. 3G). There was also a significant decrease in the impairment proba-
bilities induced by the invasive alien species (Wilcoxon sign-rank test
for paired data = 8.7 104, p-value = 0.0004; Fig. 3H).

Finally, the diagnosis-based approach allowed detecting temporal
patterns in ecological recovery or ecological degradation at a local spa-
tial scale (i.e. site level). Two sites, A and B (located on the Fig. 2F),
were sampled between 2005 and 2015, and characterized using outputs
of the three most efficient WQ (‘Nitrates’, ‘Nitrogen compounds’, ‘Phos-
phorous compounds’) and HD (‘Longitudinal continuity’, ‘Stream
width’, ‘Transportation facilities’) models. Site A displayed low impair-
ment probabilities for all the six pressure types over the whole decade
(impairment probabilities far lower than 0.50; Fig. 4A) with no clear
variation in temporal pattern. In contrast, site B exhibited rather high
impairment probabilities (impairment probabilities ≥ 0.50) for all the
six pressure categories in 2005. However, for this site, the model results
seem to indicate an improvement over the decade regarding the three
nutrient-related pressures: nitrates and, during the more recent years,
phosphorous and other nitrogen compounds (Fig. 4B).

3.4. Ecological validation

The relationships between impairment probabilities and observed
metric values were explored for the five most contributive metrics to
eachmodel (among 1576 testedmetrics) and each of the 19most accu-
rate RF models (AUCtest N 0.70; Table 1). For example, the probability of
impairment in longitudinal continuity between a given site and the sea
increased with a decreasing proportion of individuals requiring more
than four years to reach sexual maturity in the fish assemblage
(i.e., Anguillidae, sea and river lampreys; Fig. 5A). Conversely, the pro-
portion of eurythermal individuals in the assemblage was positively
correlated to the probability of impairment by hydrological instability
(Fig. 5B). There was a negative and non-linear relationship between
the relative abundance of individuals with a long period of reproduction
and the probability of significant impairment of fish communities by ni-
trates (Fig. 5C). Finally, a negative, linear relationship was also detected
between the proportion of lithophilous spawners and the probability of
impairment by fungicides (Fig. 5D). The remaining relationships and as-
sociated correlation coefficients are listed in Table H.

4. Discussion

4.1. Reliability of the diagnosis-based approach

Combining a diverse array of taxonomic and functional information
on fish communities has enabled us to build efficient models predicting
community impairment by individual anthropogenic pressure catego-
ries in a multi-pressure context. Compared to many other studies on
fish assemblages, we have constructed an unparalleled fish characteris-
tic database by gathering and harmonizing information from various
published functional trait databases, enriched by additional information
on life-history strategies (e.g., longevity) and taxonomy (at family and
order levels) of fish (Table B). We have taken into account a large set
of pressure categories related to water quality (n = 13), habitat degra-
dation (n=14), and invasive alien species (n= 1), unlike most of pre-
vious fish studies investigating the effects of pressures related to WQ
(Azimi and Rocher, 2016), HD (Adamczyk et al., 2017) or both WQ
and HD but targeting b15 pressure categories (Pont et al., 2006;
Fig. 3. Temporal changes in impairment probability distributions (IP), at the sites that w
hydromorphological (HD; A/, C/, and E/) and chemical (WQ; B/, D/ and F/) pressure categor
performing HD and WQ models (AUCtest N 0.70; G/). Since abiotic and biotic models were bu
panel (H/) and were not included in the calculation of the ‘Total IP’. (***) indicates a high
(Wilcoxon sign-rank test for paired data; all p-values b 0.0001), whereas (**) indicates a signifi
Schinegger et al., 2012, 2018; but see Allan et al., 2013). The majority
of the pressure-specific models built here exhibited very good (AUCtest
≥ 0.80) or good performances (0.70 ≤ AUCtest b 0.80). Using the 20
best performing models, we have detected a higher proportion of sam-
pling events impaired byHD thanWQor IAS pressures (Fig. 1A). This re-
sult is consistent with recent literature that has considered that
hydromorphological alterations (e.g. river discontinuities) may be the
most frequent pressures acting on fish communities (Poikane et al.,
2017; Schinegger et al., 2012) and on European surface waters, in gen-
eral (EEA, 2018). Although wemust be careful when comparing studies
with not strictly similar definitions of pressure types, the obvious trend
of a greater effect of HD pressures on fish communities suggests
(i) more widespread anthropogenic modifications in HD thanWQ con-
ditions of streams, and/or (ii) higher sensitivity of fishes to changes in
HD conditions than to changes in WQ conditions. Because we have
found (i) a higher proportion of fish communities impaired by HD
thanWQ pressure categories (Fig. 1A) and (ii) no significant differences
in the capacity of RFmodels to detect HDorWQpressure categories, the
first hypothesis seems more plausible.

4.2. Disentangling multiple co-occurring pressures

In this diagnosis-based approach, a RF model is built for each pres-
sure category to detect bio/ecological shifts in fish communities. How-
ever, biological communities are often simultaneously impacted by
multiple pressures (Allan et al., 2013; Poikane et al., 2017; Schinegger
et al., 2018; this study). We found that fish communities were signifi-
cantly impacted by, on average, 7.34 ± 0.03 abiotic pressure categories
(mean± SE; impairment probability N 0.50; min. = 0, max. = 17). In a
multi-pressure context, RF models are robust methods to detect the
main impairment probabilities of fish communities by individual pres-
sure categories using various combinations of biological and taxonomic
metrics that respond to those pressures (TableH, Fig. 5). However, there
are two main reasons explaining why the combined effects of co-
occurring pressures on fish communities (e.g. direct, indirect, nested,
additive, synergistic or antagonistic) may have reduced the efficiency
of some RF models in their capacity to detect the effects of individual
pressure categories (Townsend et al., 2008; Villeneuve et al., 2018).
First, the intensity of a given pressure may not be strong enough to pro-
vide a distinguishable signal in the functional trait profiles of fish com-
munities. Second, the pressure gradient was not wide enough -
i.e., provided not enough contrasting situations (“low” vs. “significant”)
- to be efficiently discriminated by RFmodels. In those cases, comparing
the variations in trait profiles of fish communities in mono- vs. multi-
pressure contextsmay help to improve the performance of poorly accu-
rate RFmodels (Larras et al., 2017) and to understand the underlying ef-
fects of multiple pressures on ecosystem functions (Poikane et al.,
2017).

4.3. Ecological validation and interpretation

The analysis of the contribution of the most important biological
metrics to the model impairment probabilities as well as the analysis
of the response patterns of those metrics along an increasing gradient
of impairment probability, allowed us gaining insights into the potential
mechanisms explaining the community responses - linear or non-linear
- tomultiple pressures (Fig. 5, Table H). Yet, mechanisms of whole com-
munity responses to multiple pressures may be more complex than
mere pressure-response relationships. For example, HD and WQ pres-
sures may have direct lethal or sublethal effects on fish and indirect
ere sampled in both 2005 and 2015 (n = 543). Results are provided for the three
ies corresponding to the RF models with the highest AUCtest (N0.80) and for the 19 best
ilt differently, temporal changes in IP due to invasive alien species are shown in the last
ly significant decrease in mean IP values (black triangles) in 2015 compared to 2005
cant decrease in IP between the two dates (0.0001 b p-value b 0.001).



Fig. 4. Radar charts based on site-specific and inter-annual changes in impairment probabilities (IPs) for the three hydromorphological (HD) and the three chemical (WQ) pressure
categories corresponding to the RF models with the highest AUCtest (N0.80). A/ example of a site (the Loup river, at Tourrette-sur-Loup) with stable and low IP (b0.50; i.e. the dashed
blue line) for all the sampling events; B/ example of another site (the Gier river, at Givors) with a partial ecological recovery for three pressures (Nitrogen compounds, Nitrates, and
Phosphorous compounds), whereas IPs remained stable and high (i.e. IP N 0.50) for the three other pressure categories over the same period. “Long. continuity” = Longitudinal
continuity; “N. comp.”= Nitrogen compounds (except nitrates); “P. comp.”= Phosphorous compounds. See Fig. 2F for the site locations in France. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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functional effects that percolate - more or less rapidly - through food
webs. A combination of those direct and indirect effects may explain
why the best RF model performances were obtained using different in-
tegration periods for the different WQ pressure categories. Therefore,
the different integration periods should be interpreted as the period of
time over which individual WQ parameters need to be taken into ac-
count to observe significant shifts in the functional composition of fish
communities. A comprehensive ecological interpretation of RF model
outputs and underlying mechanisms would thus require answering
the following questions i) “which combinations of fish metrics respond
to which pressures?” and ii) “which ones are the most (or least) respon-
sive?”. Although we have provided a few examples (Fig. 5, Table H),
with N1500 fish metrics taken into account in this study, this task is
challenging and beyond the scope of the present study. Addressing
this task along with evaluating functional trait profiles in mono- vs.
multi-pressure context would represent a significant addition to the re-
search in the field of ecological risk assessment.
4.4. Impairment probabilities across spatial and temporal scales

Based on the large spatial-temporal extent of our datasets, we have
been able to investigate spatial and temporal patterns in fish commu-
nity responses to anthropogenic pressures, via RF model results. The
spatial patterns of river degradation found in this study were consistent
with those observed in recently published papers; e.g. the widespread
impact of longitudinal continuity impairment (Fig. 2A) on European
(EEA, 2018; Schinegger et al., 2018) and North American fish communi-
ties (Cooper et al., 2016). In addition, Schinegger et al. (2012) showed
that, overall, both WQ and HD pressures impaired lowland rivers
whereas HD pressures dominantly impaired mountain and headwater
streams, resulting in lowland streams being prone to a higher risk of
degradation than mountain streams. Our analyses have confirmed this
observation as the mean impairment probability (IP) of the 19 best
performing abiotic RFmodelswas negatively correlatedwith the site al-
titude (Spearman rank correlation coefficient = −0.59, p-value b

0.0001; see also Fig. 2E).
The temporal patterns in river conditions indicate that risks of river

impairments, by at least twoWQ variables, have significantly decreased
between 2005 and 2015 (e.g., for nitrogen (except nitrates) and phos-
phorous compounds; Fig. 3D and F). These results are in linewith recent
reductions in nutrient pollutions within freshwater ecosystems after
many EU environmental policies to prevent nutrient losses (EEA,
2018; Floury et al., 2013; Latli et al., 2017). Similar decreasing trends
were observed for the overall risk of river degradation (Fig. 3E). At the
site scale, the diagnosis-based approach was also able to detect a de-
crease in impairment risks due to twoWQ pressures (‘Nitrates’ and ‘Ni-
trogen compounds’) over a ten-year period (Fig. 4B). Overall, a powerful
advantage of this approach is that various combinations of spatial (from
site to catchment area) and temporal (from years to decades) scales can
be investigated in order to optimize the selection of the most appropri-
ate restorationmeasures, considering the pressure categories providing
the highest impairment probabilities.
4.5. Effects of invasive alien species

Our diagnosis-based approach using a wide variety of taxonomic
and functional information has demonstrated high performance for
evaluating the risk of community impairment by invasive alien species
(AUCtest = 0.893). With 43% of all the sampling events being signifi-
cantly impacted by invasive alien species (impairment probability N

0.5; Fig. 1A; Fig. B), our results have indicated that this pressure category
is widespread across the French metropolitan territory. Those results
are in line with many other recent studies from other locations world-
wide (e.g., Europe, North America, New Zealand) and dealing with var-
ious invasive alien species across the tree of life (e.g., fishes, reptiles,
birds, fungi, plants; Gallardo et al., 2016; Peoples and Goforth, 2017a,
2017b; Peoples and Midway, 2018; Strubbe et al., 2015).

Our results have indicated, however, that impairment probabilities
due to invasive alien species globally decreased significantly over time
in the sites that were sampled in both 2005 and 2015 (i.e., over a de-
cade; Fig. 3H). Assuming that the risk of impairment by invasive alien
species reflects the vulnerability of the native assemblage, and then
the state of the surrounding ecosystem,wewould expect to have higher
probabilities of impairment by invasive alien species in disturbed sites
compared to less disturbed sites (Gallardo et al., 2016). We have tested
this hypothesis using two distinct, but complementary ways. First, we
have checked the most important fish metrics contributing to the
model predictions and found that the “proportion of omnivorous fish
species in the native assemblage” was one of these metrics, and was
highly (rho = 0.85) and positively correlated to the probability of im-
pairment by IAS (Table H). This first result is supporting our hypothesis
since omnivorous and generalist species are usually found in disturbed



Fig. 5.Relationships between observedmetric values (x-axis) and impairment probabilities (y-axis) predicted by two hydromorphology-related (A/, B/) and twowater quality-related (C/,
D/) RFmodels. rho= Spearman rank correlation coefficient (all p-values b 0.0001).We also explored the relationships between the impairment probabilities of the 19 best performing RF
models (AUCtest N 0.70; Table 1) and the observed metric values of the five most contributive metrics to the predictions of those models (Table H).
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aquatic systems with high turbidity, organic matter and nutrient load
(Gallardo et al., 2016). Second, we have evaluated the correlation be-
tween the mean impairment probabilities over the 19 abiotic pressure
categories—a proxy of the overall ecosystem state—and the impairment
probabilities resulting from the IAS RF model. Interestingly, we have
found a positive and significant correlation (Fig. C), suggesting that
the significant decrease in the impairment risk of native assemblages
by invasive alien species was most likely related to the significant im-
provement in the ecosystem state over the studied decade
(i.e., significant decrease in the mean total impairment probability;
Fig. 3G).

Although our diagnosis-based approach was efficient at detecting
the impairments induced by the invasive alien species and provided
encouraging results, we acknowledge that an exhaustive evaluation
of their effects on native communities is a more challenging task
than simply considering their presence/absence (Jeschke et al.,
2014; Schlaepfer, 2018). First, establishing a list of IAS was not a triv-
ial task since this status could change across locations (local scale vs.
regional scale), expert knowledge and institutions. This is the reason
why we have chosen to combine the information from three main
data sources (Table A). Second, along with the presence/absence of
invasive alien species, we could integrate their taxonomic richness
and composition (i.e, species identities and relative abundances) as
well as key functional metrics (e.g., the proportion of invasive alien
predators, the maximum weight or fecundity of invasive alien spe-
cies) within a multi-parametric “invasive alien species” pressure cat-
egory. In this sense, our data indicate that, when present in the
assemblage (i.e., 41% of the sampling events using abundance
data), the IAS represented on average 6.1 ± 0.2% of the total fish
abundances within the assemblages. Third, we have only considered
the impairment of native assemblages by invasive alien fish species
whereas recent meta-analyses have demonstrated that the expan-
sion of invasive alien macrophytes (Gallardo et al., 2016) or benthic
macroinvertebrates (Latli et al., 2017; Otjacques et al., 2016) could
trigger disproportionate adverse effects on native fish communities.
Integrating those suggestions in future studies would most likely
help to improve our understanding of the impacts of invasive alien
species on native fish communities.
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4.6. Caveats

We admit that the definition of multi-parametric “pressure catego-
ries” has required the aggregation of miscellaneous pressure parame-
ters (from 1 to N70; described at various spatial and temporal scales).
Each parameter may influence the fish assemblages and the fish-based
metrics in different ways. The use of multi-parametric pressure catego-
ries was, however, a robust way to reduce models' complexity and to
deal with heterogeneous environmental data (e.g., parameters with
missing data). Indeed, the performance of this predictive approach re-
lies on the accuracy and availability of data used to characterize anthro-
pogenic pressures. For instance, the ‘Acidification’ model was dropped
since the associated pressure gradient could not be properly described
(i.e., lack of significantly impacted sampling events). In addition, the
amount of data available for describing the intensity of WQ pressure
categories was more variable among sampling events compared to HD
ones (i.e., more missing data in WQ than in HD pressure categories;
Tables C and D). Yet, the performances of WQ and HD models were
not significantly different (i.e., no significant difference in AUCtest be-
tween the tenHD and nineWQmodels exhibiting at least ‘good’ perfor-
mances; see ‘Results’ section), thus demonstrating the robustness of this
diagnosis-based approach.We therefore advocate that future studies on
risk assessment should seek to establish standardized definitions of
pressure categories based on (i) data availability and accuracy, and (ii)
a broad range of individual pressure parameters, including, but not lim-
ited to, climatic factors (e.g. modifications in temperature and precipita-
tion patterns), and overharvesting (Schinegger et al., 2013).

A recurrent issue in ecological risk assessment studies is to discrim-
inate the individual effects of correlated pressure categories. This issue,
however, can be addressed with our diagnosis-based approach by eval-
uating themost contributive fish metrics to each RFmodel of the corre-
lated pressure categories. The hypothesis behind is that two strongly
correlated pressures should be translated into similar functional trait
profiles within communities. Although we found that the non-random
co-occurrence of pressure categories was low overall (mean Cohen's
Kappa coefficient= 0.07± 0.01), a few pairs of pressure categories ex-
hibited rather high co-occurrences (Table G). Interestingly, correlated
pressure categories shared some similar fish metrics among the five
most important ones to each model thus confirming our hypothesis
(Tables G and H).

4.7. Implications of the diagnosis-based approach

The present work has proposed an approach to help scientists and
environmental managers for identifying the individual impacts of vari-
ous anthropogenic pressures potentially impairing stream fish commu-
nities, both taxonomically and functionally (step II). We have designed
the R ecodiag-package to allow assessment of pressure-specific impair-
ment risks and to investigate the responses of communities to contrast-
ing pressure levels. This R package produces convenient visualizations
ofmodel outputs (radar charts), enhancing the simultaneous evaluation
of multiple pressures and the comparison of impairment risks over
time. This last point is particularly useful for stream managers to rank
the effects of co-occurring pressures for prioritizing management mea-
sures and implementing the most appropriate ones, for restoring river
integrity (step III). Althoughwemainly presented results at the country
scale (mainland France), this approach can also be applied at the site or
local scale, which is, to date, themain spatial scale of mostmanagement
measures. For instance, in the situation of Fig. 4B, stream managers
could focus their efforts on reducing the effects of ‘Phosphorous com-
pounds’, ‘Transportation facilities’ and anthropogenic modifications of
‘Stream width’, by acting on the individual parameters defining these
pressure categories (e.g. total phosphorous concentrations, presence
of roads or railways near stream banks and areas of intensive farming,
respectively). The other significant pressures could be more difficult to
manage over a short period (e.g. the cumulative effects of barriers
between the studied site and sea; pressure category ‘Longitudinal conti-
nuity’) or did not represent serious threats (impairment probability
lower than 0.50; ‘Nitrates’, and ‘Nitrogen compounds’).

5. Conclusion

The current application of the diagnosis-based approach does not
aim at replacing existing fish-based indices. The major goal of fish-
based indices is to provide an efficient evaluation of the global impact
of anthropogenic pressures impairing the monitored water bodies.
This approach is rather complementary to fish-based indices for more
precisely identifying the nature of the anthropogenic pressures signifi-
cantly impairing each of these water bodies (here, river reaches) and
for helping managers to select the best strategy for restoring water
and habitat quality in these water bodies (e.g. reaching the ‘good’ eco-
logical status). Out of the 28 abiotic and biotic pressure categories
tested, the random forest models have efficiently detected the impair-
ments due to nine chemical, ten hydromorphological and one biological
pressures. The best performing models also indicated that fish commu-
nities were impacted, on average, by seven abiotic pressure categories
but the overall impairment probabilities of the whole fish assemblages
(including native and invasive alien species) decreased significantly be-
tween 2005 and 2015. This diagnosis-based approach is robust and flex-
ible enough to assess specific risks of river degradation under multi-
pressure scenarios using distinct biological quality elements
(i.e., macroinvertebrates, diatoms, and now fishes). It is also capable to
handle complex pressure-response relationships (linear and non-
linear relationships), able to diagnose various water bodies (from head-
waters to lowland rivers), and to simultaneously consider a variety of
pressure categories (hydrological, chemical and biological ones). In
fine, merging the information provided by distinct biological quality el-
ements (e.g., macroinvertebrates, diatoms, fishes, macrophytes) should
pave the way for a holistic and efficient understanding of the structure
and functions of stream ecosystems, that will help water managers
worldwide in the decision-making process in relation to river
restoration.
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