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ABSTRACT

Aim Functional diversity is a key facet of biodiversity that is increasingly being
measured to quantify its changes following disturbance and to understand its
effects on ecosystem functioning. Assessing the functional diversity of assemblages
based on species traits requires the building of a functional space (dendrogram or
multidimensional space) where indices will be computed. However, there is still no
consensus on the best method for measuring the quality of functional spaces.

Innovation Here we propose a framework for evaluating the quality of a func-
tional space (i.e. the extent to which it is a faithful representation of the initial
functional trait values). Using simulated datasets, we analysed the influence of the
number and type of functional traits used and of the number of species studied on
the identity and quality of the best functional space. We also tested whether the
quality of the functional space affects functional diversity patterns in local assem-
blages, using simulated datasets and a real study case.

Main conclusions The quality of functional space strongly varied between situa-
tions. Spaces having at least four dimensions had the highest quality, while func-
tional dendrograms and two-dimensional functional spaces always had a low
quality. Importantly, we showed that using a poor-quality functional space could
led to a biased assessment of functional diversity and false ecological conclusions.
Therefore, we advise a pragmatic approach consisting of computing all the possible
functional spaces and selecting the most parsimonious one.
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INTRODUCTION

In the current context of the sixth biodiversity crisis, assessing

the level of biodiversity within species assemblages is a crucial

step to better understand and predict the impacts of global

change on ecosystem functioning (Cardinale et al., 2012).

Among the different facets of biodiversity, functional diversity,

i.e. the breadth of functions performed by species in an assem-

blage (Petchey & Gaston, 2006), is closely related to the rates of

ecosystems processes (Mouillot et al., 2011; Naeem et al., 2012)

and is shaped by environmental conditions and anthropogenic

disturbances (Flynn et al., 2009; Villéger et al., 2010). Functional

diversity is thus increasingly measured to disentangle the pro-

cesses that structure assemblages and to assess how the biodi-

versity of assemblages affects ecosystem functioning, including

large-scale studies through functional biogeography (Violle

et al., 2014).

The first step in measuring functional diversity is to describe

the functional strategies of species using a set of functional

traits, i.e. any biological feature measurable at the individual

level that is directly related to an ecological function (Violle

et al., 2007). The number of traits and their type (quantitative

versus qualitative) vary depending on the size and taxonomic

diversity of the species present in the set of local assemblages

being studied (Petchey & Gaston, 2006). Functional diversity

within each species assemblage is then assessed based on the
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functional strategies of the species present, i.e. their respective

combination of functional traits values (Petchey & Gaston,

2006; Villéger et al., 2008). Some functional diversity indices

could be computed directly based on traits values (e.g. func-

tional distance between species; Walker et al., 1999; Ricotta &

Szeidl, 2009) but most of indices require the placement of

species within a functional space to determine their distribu-

tion (Mouchet et al., 2008; Villéger et al., 2008). In the last

decade two frameworks were proposed for building functional

spaces. The oldest is based on functional dendrograms, i.e.

trees where species are the tips and node position and branch

lengths reflect hierarchy in the functional dissimilarities

between species (Petchey & Gaston, 2002; Mouchet et al.,

2008.) This representation allows us to compute indices similar

to those developed for phylogenetic diversity (e.g. the total

length of branches that link species present in an assemblage;

Petchey & Gaston, 2002). However, an analysis of functional

diversity patterns is generally required to assess which func-

tional trait(s) are structuring the dissimilarity between species

in an assemblage. Therefore, multidimensional functional

spaces where species are plotted along trait axes, or synthetic

axes capturing combined traits, have been proposed more

recently (Cornwell et al., 2006; Villéger et al., 2008). These

Euclidean multidimensional spaces allow the computation and

visualization of several complementary facets of functional

diversity (Mouillot et al., 2013).

Either dendrograms or functional spaces have been used to

estimate functional diversity across space and time (Petchey &

Gaston, 2006; Mouillot et al., 2013; Violle et al., 2014).

However, the quality of the functional space, i.e. the extent to

which it faithfully reflects the initial functional dissimilarity

between species, is still rarely investigated. The use of a biased

functional space can have profound implications for the sub-

sequent assessment of functional diversity (Podani & Schmera,

2006; Villéger et al., 2011). For instance, the dissimilarity

metric used to compute the functional distance between species

and the clustering algorithm used to build the functional

dendrogram can significantly change the ranking of functional

diversity among assemblages (Podani & Schmera, 2006;

Mouchet et al., 2008). In the same vein, the dimensionality of

the functional space can affect conclusions about trends in

functional diversity across time (Villéger et al., 2011). There are

already statistical methods for selecting functional traits based

on their known correlation with response to ecological gradi-

ents or ecological roles (e.g. Pillar & Sosinski, 2003) and

methods to select the best subset of traits to discriminate com-

munities between user-defined types (e.g. fire regime; Ricotta &

Moretti, 2010). Recently, criteria have been proposed to select,

a posteriori, the functional dendrogram offering the least

distortion from the initial species functional dissimilarity

(Mouchet et al., 2008; Mérigot et al., 2010). However, surpris-

ingly, there is still no objective way to compare the quality of

dendrograms and Euclidean spaces or to determine how many

dimensions are necessary to build a reliable functional space,

and these two points are crucial for producing an unbiased

assessment of functional diversity. Here we present a general

framework for quantifying the quality of species representation

within a functional space. We then used simulated datasets to

analyse the influence of species richness, the number of traits

and their type on the identity and quality of the best functional

space, and to test how the quality of functional space affect

functional diversity patterns in local assemblages. Finally, using

a real study case, we illustrated how the difference in quality of

functional spaces can affect biogeographical conclusions.

MATERIAL AND METHODS

Building a functional space to measure
functional diversity

Assessing functional diversity within a set of local assemblages

first requires the building of a functional space using a three-

step process (Petchey & Gaston, 2002; Villéger et al., 2008)

(Fig. 1).

Describing species using functional traits

The first step towards computing functional diversity is to func-

tionally describe the species of interest using a set of relevant

functional traits (Violle et al., 2007). The number of traits used

to describe the species depends on the taxa and on the focus of

the study, but generally exceeds five. Similarly, the nature of the

traits selected depends on the biological functions described

and/or on the availability of relevant information (Violle et al.,

2007). Most of traits describing morpho-anatomy (e.g. size,

shape) or biochemistry (e.g. nutrient content) of organisms are

measured using continuous variables. Other facets of species

niche are coded as categories (e.g. main diet, ability to fix nitro-

gen), including binary traits (e.g. migratory behaviour, clonal

reproduction) and ordered categories (e.g. vertical position in

an aquatic habitat – bottom, bottom and water column, water

column). Ordinal traits could also be used to code continuous

variables when it is not manageable to assess these traits with

good confidence for all the species (e.g. size when both size

range and species pool are large; Villéger et al., 2011). Therefore,

even if most studies are based only on morpho-anatomical con-

tinuous traits (e.g. Cornwell et al., 2006; Villéger et al., 2010),

some studies account for a mix of categorical and continuous

traits (e.g. Olden et al., 2006; Buisson et al., 2013) or even only

for categorical traits (e.g. Villéger et al., 2011; Belmaker et al.,

2013).

Measuring functional dissimilarity between species

The second step in measuring functional diversity is to compute

the matrix of functional dissimilarity between all pairs of species

(Fig. 1). The choice of the distance metric to use depends on the

nature of the functional traits (Mouchet et al., 2008; Villéger

et al., 2008). Euclidean distance could be used when all the traits

are continuous and requires a preliminary scaling of each trait to

a null mean and a standard deviation of one to give the same

weight to each trait. Gower’s distance (Gower, 1966) and the
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subsequent generalization proposed by Pavoine et al. (2009) can

cope with all types of traits (i.e. traits coded as continuous,

categorical, ordinal, circular or fuzzy variables), while giving

them the same weight. It also tolerates missing trait values,

which can be present in study cases with a rich species pool.

Gower’s distance can thus be applied to all study cases, including

those with only continuous traits, and is therefore widely used in

functional ecology studies (Podani & Schmera, 2006; Villéger

et al., 2011; Buisson et al., 2013).

Building a functional space

The last step towards computing functional diversity indices is

the computation of the functional space based on the functional

dissimilarity matrix (Fig. 1). Two methods have been proposed

during the last decade or so: functional dendrograms (Petchey &

Gaston, 2002) and multidimensional functional spaces

(Cornwell et al., 2006; Villéger et al., 2008). Different functional

dendrograms could be obtained from the same dissimilarity

matrix depending on the clustering method used (UPGMA,

WPGMA, UPGMC, WPGMC or Ward’s method). We recom-

mend using the framework developed by Mouchet et al. (2008)

which consists of selecting the best dendrogram among all the

trees possible, including consensus trees among clustering algo-

rithms, based on the two-norm quality criterion (Mérigot et al.,

2010).

Multidimensional functional spaces are computed based on

the dissimilarity matrix using a principal coordinates analysis

Figure 1 Framework for building and
assessing the quality of functional spaces.
The first step in building functional
spaces is to assess a set of functional
traits on all the species present in the
regional pool, i.e. species present in at
least one of the local communities
studied (a). The functional distance
between all pairs of species present in the
regional pool is then computed (b),
using the Euclidean (if all traits are
continuous) or the Gower’s metric (if
there are only categorical traits or several
types of traits). Two types of functional
space can be computed using this
functional distance matrix: (c1) a
functional dendrogram selected as the
best tree among all combinations of
clustering methods; (c2) several
multidimensional functional spaces, with
two to k dimensions (k selected by the
user, usually less than six), provided by a
principal coordinates analysis (PCoA).
The quality of these functional spaces
can be assessed by computing the mean
squared deviation (illustrated for three
species pairs by grey double-arrows)
between the initial functional distances
(i.e. based on traits) and the scaled
functional distances in the functional
space: co-phenetic distance along tree
branches (d1) or Euclidean distance in
the multidimensional functional space
(d2). The lower the mean squared
deviation, the higher the quality of the
functional space. Functional diversity
indices in each of the local communities
studied are computed based on species
abundance/biomass and position of
species in a functional space, i.e.
topology and branch length of a
dendrogram (e1) or coordinates of
species in a multidimensional space (e2).
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(PCoA; a generalization of the principal component analysis,

PCA), which produces a Euclidean space with two to the

number of species minus one axes. Users have then to select a

posteriori the number of dimensions to keep for computing

functional diversity indices using species’ position in this mul-

tidimensional space (Fig. 1; Villéger et al., 2008). It should be

noticed that in study cases involving only continuous functional

traits, a multidimensional functional space could be obtained

directly from traits (i.e. each axis is a trait) after scaling each trait

(mean = 0 and standard deviation = 1). However, if there are too

many traits (e.g. more than 10), computing functional diversity

indices will be time-consuming while graphical representation

of the functional space will not be manageable. Therefore, in

such a situation it is often preferable to look for a functional

space with fewer dimensions, which could be done by comput-

ing a PCA on scaled functional traits and keeping species coor-

dinates on principal axes to build a multidimensional functional

space (Villéger et al., 2008).

Assessing the quality of a functional space

A functional space of high quality is a functional space where

distance between each pair of species is congruent with the

initial functional distance (i.e. Gower’s or Euclidean distance

computed on trait values) (Mérigot et al., 2010). Distances

between species in functional spaces are computed using

co-phenetic distance for dendrograms (the total length of the

branches linking two species) and Euclidean distance for mul-

tidimensional spaces (Fig. 1). Co-phenetic or Euclidean dis-

tances do not have the same unit and/or range as the initial

functional distance computed on traits values. To compare

initial and final functional distances, we propose to standardize

the distance in the functional space according to the maximum

value of the initial functional distance matrix:
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where xij represents the initial distance between species i and j

and yij represents the co-phenetic distance on the dendrogram

or the Euclidean distance in a multidimensional space for the

same pair of species. After this scaling, the initial and final func-

tional distances have the same maximum and could thus be

compared (Fig. 1).

To assess the congruence between the initial distance and the

standardized distance in the functional space we propose to use

a metric commonly used in statistics, the mean squared devia-
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where S is the number of species, xij represents the initial func-

tional distance between species i and j and yij
st represents the

standardized distance in the functional space for the same pair

of species. The mSD is minimal and equals 0 when the func-

tional space perfectly represents the initial distance ( x yij ij= st for

all pairs of species) and it increases when some pairs of species

are poorly represented in the functional space, i.e. when species

with similar trait values are far in the functional space or alter-

natively when species with different trait values are close in the

functional space.

Disentangling the determinants of the quality of
functional spaces

Simulation of regional pools of species and of their

functional traits

We aimed to characterize the influence of three variables on the

quality of a functional space: the number of species studied (i.e.

the species present in at least one of the local assemblages for

which functional diversity should be assessed) and the type and

the number of traits used to describe them. We selected a set of

modalities for these variables that correspond to the situations

most frequently encountered in functional ecology studies (Fig.

S1 in Supporting Information). We considered four levels of

species richness: 50, 100, 200 and 400 species. These levels cover

the range of species richness currently observed in functional

ecology studies, from local to regional scales (e.g. Belmaker

et al., 2013; Villéger et al., 2013). We considered two levels of

trait number, 5 and 10 traits, as the number of traits used is often

between 3 and 20 (Cornwell et al., 2006; Olden et al., 2006;

Villéger et al., 2010; Buisson et al., 2013). To analyse how trait

coding can affect the quality of the functional space we consid-

ered three types of traits used to describe organisms: categorical,

ordinal and continuous traits. We also considered a situation

with mixed traits with the following proportions: 1/5 of con-

tinuous traits, 2/5 of categorical traits and 2/5 of ordinal traits.

The combinations of modalities between the three variables

gave a total of 32 types of regional pool of species. To simulate

these 32 types of regional pool, we randomly sampled species in

a global functional matrix containing 2000 species and 30 func-

tional traits (10 per trait type) (Fig. S1). Trait values for these

species were generated according to realistic evolution processes

(a Brownian motion process for continuous traits and a

Markovian process for categorical and ordinal traits) along a

simulated pure-birth phylogenetic tree linking the 2000 species.

For each categorical and ordinal trait, five potential states were

considered. A thousand replicates per type of regional pool were

sampled (Fig. S1).

Statistical analyses

For each of the 32,000 simulated functional traits datasets, we

computed a distance matrix using Gower’s distance and we

compared the mean squared deviation of seven functional

spaces: the best functional dendrogram obtained with the

Mouchet et al. (2008) procedure and the six multidimensional

functional spaces, from two to seven dimensions, corresponding

to the axes provided by a PCoA. We did not consider spaces with

Assessing functional space quality

Global Ecology and Biogeography, 24, 728–740, © 2015 John Wiley & Sons Ltd 731



more than seven dimensions because in real study cases users

want to keep a manageable number of dimensions to reduce

computing time and allow graphical representation.

We assessed the relative importance of the number of species,

the number of functional traits and their type, and the type of

representation (dendrogram and two- to seven-dimensional

spaces) on the quality of functional space. We used a linear

model testing the influence of these four variables and of their

six pairwise interactions on the mSD of the simulated functional

spaces.

Impact of the quality of the functional space on
functional diversity measures

Simulations of local assemblages

To assess how the quality of the functional space built on a

regional pool of species affects the assessment of functional

diversity in local assemblages, we simulated species assemblages

with three levels of species richness (10, 20, 40 species) under a

random sampling of species within the regional pool and

under two types of non-random assembly processes (niche fil-

tering, limiting similarity) following the procedure of Mouchet

et al. (2010) (Fig. S1). The niche filtering process was simulated

by randomly choosing an ‘optimal’ species, and then sorting

species with the lowest raw functional distance (i.e. Gower’s

distance) to this optimal species until targeted local species

richness was reached. The limiting similarity process was simu-

lated by randomly choosing a species, then sequentially select-

ing the species with the highest average functional distance

from the set of species already selected, until targeted species

richness was reached. Species relative abundances were sampled

using a log-normal probability law and attributed to species

according to the type of assembly process: randomly for a

random scenario, in decreasing order for niche filtering and

limiting similarity scenarios, i.e. highest relative abundance for

the first species sampled and lowest abundance for the last

species selected.

Computing functional diversity of simulated local assemblages

Two types of functional diversity indices were computed for

each simulated local assemblages using species position in each

of the seven types of functional spaces built for their respective

regional pool: (1) functional richness, i.e. the range of species

position in the functional space, with the Functional Diversity

(FD) index on a dendrogram (Petchey & Gaston, 2002) and the

Functional Richness (FRic) index in multidimensional spaces

(Villéger et al., 2008), and (2) functional entropy, i.e. the distri-

bution of species relative abundance in the functional space,

with Rao’s Q index (expressed as an equivalent number of

species; Ricotta & Szeidl, 2009) using co-phenetic distance on

the dendrogram or Euclidean distance in multidimensional

spaces.

Functional diversity values (i.e. an index I measured in a

functional space f) measured in a local assemblage simulated

under a niche filtering process were compared with the

100 values of the same index computed in the same functional

space for the 100 local assemblages simulated with random

sampling in the same regional pool, using the standard-

ized effect size (SES) metric: SES(If) = [If – mean(IRandom)]/

SD(IRandom). The SESs of functional diversity indices for

limiting similarity process were computed in the same way.

Comparison of the SESs of functional diversity indices

between species assemblages is commonly used to detect non-

random assembly processes and map functional diversity pat-

terns independently of differences in local species richness (e.g.

Swenson et al., 2012). Niche filtering simulations promoted a

functional clustering of species and of their abundances in the

functional space (compared with the random scenario) and

thus should lead to a negative SES. On the contrary, limiting

similarity processes promoted a functional overdispersion and

thus should lead to a positive SES.

To test whether the identity of the functional space affects the

difference in functional diversity between random and the other

two assembly processes, the effects of functional space type and

of the characteristics of the regional species pool (number of

species and number and type of functional traits) and the local

assemblage species richness on the four SES (two functional

diversity indices × two non-random assembly processes) were

assessed using a linear model accounting for the pairwise inter-

actions between these five factors.

A functional biogeography study case

To illustrate the potential consequences of differences in the

quality of functional space on functional diversity patterns we

assessed the functional biogeography of a vertebrate taxon at a

continental scale. We used a database on native fish occurrences

in 137 river basins of Europe (Fig. S3; Villéger et al., 2014). The

246 fish present in this regional species pool were described

using six functional traits, two continuous traits (size and

body shape), one categorical trait (foraging position) and two

ordinal traits (main diet, rheophily and vertical habitat). These

functional traits were assessed for each species based on pic-

tures and information available in the scientific literature

(Kottelat & Freyhof, 2007; Froese & Pauly, 2013; see details in

Table S1).

The quality of five functional spaces (the best func-

tional dendrogram and multidimensional space from two

to five dimensions) was computed using the R function

‘quality_funct_space’ provided in Appendix S1. The functional

richness of each fish assemblage was computed in these five

functional spaces. For each of the 137 fish assemblages we rep-

licated 1000 times a random sampling of the observed number

of species present in the assemblage among the pool of 246

species. Then, using these expected values we computed in each

assemblage the SES of each functional richness index in each

type of functional space. For each type of functional space, SES

values were correlated with average latitude and average longi-

tude of the river basins to test for geographical patterns in func-

tional richness.
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RESULTS

Identity and quality of the best functional space

The quality of the simulated functional spaces was highly vari-

able among situations, with mSD ranging from less than 0.001

to 0.212 (Fig. 2). The quality of functional space depended

mainly on interactions between the type of representation

selected and the types of traits used to describe them (Table 1,

Fig. 2). For instance, for regional pools described with five

ordinal traits, the mSD of the dendrogram was higher than 0.1

for all species richnesses, while it was lower than 0.01 for the five

multidimensional spaces with more than two dimensions

(Fig. 2). The lowest difference in quality between functional

spaces was observed when species were described with 10 con-

tinuous traits (Fig. 2). The quality of functional space decreased

with increasing species richness, especially for the functional

dendrogram built on the basis of categorical traits (Fig. 2).

Overall, the number of traits only marginally influenced the

quality of functional space (Table 1, Fig. 2).

The quality of the best functional space for a given type of

regional pool was high for all cases with mSD lower than 0.01 in

25 of the 32 situations and a maximum value of 0.025 (when 400

species were described with five categorical traits) (Fig. 2). Func-

tional spaces with at least four dimensions were the best, i.e. they

had the highest percentage of minimum mSD among the 1000

simulations, for all types of regional species pools (Table 2).

More precisely, seven-dimensional space performed the best for

23 of the 32 cases (Table 2). Dendrograms and two-dimensional

functional space were never selected as the best functional space

among the 32,000 simulated regional pools (Table 2). The

quality of the seven-dimensional space was on average close

to that of the four-dimensional space for cases involving

non-categorical traits (mean ± SD of difference in mSD:

–0.0024 ± 0.0024).

Impact of the quality of functional space on
functional diversity

Among the simulated local assemblages, the deviations of func-

tional richness and of functional entropy between random and

the two non-random assembly rules (limiting similarity and

niche filtering) were all significantly affected by the type of func-

tional space (Table 3, Fig. S2). Overall, dendrogram-based

indices overestimated the intensity of niche filtering and under-

estimated limiting similarity (Fig. S2). For instance, absolute

difference in SES of functional richness was higher than two

between dendrograms and seven-dimensional space for all

situations (Fig. S2). In addition, ranking of SES values among

local assemblages was not congruent between functional spaces

for a given assembly process. For instance, SES values of func-

tional richness measured in seven-dimensional space were mod-

erately correlated to SES of functional richness measured on a

dendrogram (rho = 0.359 and rho = 0.314 for niche filtering

and limiting similarity processes, respectively).

For the 246 freshwater fish species described with a mix of six

categorical, ordinal and continuous traits, the best functional

space was the multidimensional functional space with four

dimensions (Fig. 3). The quality of this functional space was

slightly higher than the quality of spaces with three or five

dimensions, but was more than three times higher than the

quality of the two-dimensional space and 57 times higher than

the quality of the best functional dendrogram (built with the

UPGMA clustering algorithm).

Functional richness was significantly correlated with species

richness in the three functional multidimensional spaces from

two to four dimensions and on the functional dendrogram

(Fig. 4). However, the deviation of functional richness from the

null hypothesis measured as SES was different between these

four functional spaces (Kruskal–Wallis test, P < 0.001). More

importantly, the strength and significance of the correlation

between the SES of functional richness and latitude and longi-

tude differed between the functional spaces (Figs 4 & S3).

Indeed, the SES of functional richness measured in the four-

dimensional (i.e. the best functional space) or in the three-

dimensional space was not significantly correlated with

latitude, while the SES of functional richness measured in the

two-dimensional space or on the functional dendrogram was

significantly correlated with latitude (Fig. 4). Similarly, the

significant negative correlation between longitude and SES

of functional richness measured in the three- and four-

dimensional spaces was not observed with the SES measured in

the two-dimensional space or on the functional dendrogram

(Fig. 4).

DISCUSSION

Building an optimal functional space is a critical step towards a

good assessment of functional diversity. Here we propose an

index to quantify a posteriori the quality of a functional space

(Fig. 1). This index, mSD, the mean squared deviation between

the initial functional distance and the scaled distance in the

functional space, differs from the traditional cophenetic corre-

lation coefficient based on the linear relationship between

initial and final distances, which is commonly used for com-

paring dendrogram quality (Mouchet et al., 2008). Indeed,

mSD accounts explicitly for the deviation between the initial

and final distance and penalizes the strong deviation because of

the square power. This index is also different from the two-

norm proposed by Mérigot et al. (2010), measuring the inertia

in the deviation, which accounts for the deviation between dis-

tances but does not allow us to compare study cases with dif-

ferent distance metrics. Our index is widely used in statistics to

assess errors and works in all situations. In addition, when

using Gower’s distance (as in our simulations and in most

study cases) the mSD ranges from 0 and 1, which helps to

interpret quality.

Using simulated datasets, we demonstrated that the type of

representation (dendrogram or multidimensional Euclidean

space) and the types of traits selected to describe species are the

main determinants of the quality of functional spaces (Table 1).
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Figure 2 Effect of the number and type
of functional traits and number of
species on functional space quality.
Points represent the average values
(± standard deviation) of the mean
squared deviation between the initial
functional distance between species pairs
based on trait values and the final
distance based on the position of species
in the functional space among the 1000
simulated datasets for each level of
species richness. The quality of
functional space increases when the
mean squared deviation tends to zero.
Coloured points represent the quality of
multidimensional functional spaces
(from two to seven dimensions)
obtained from a principal coordinates
analysis and grey points represent the
quality of the best functional
dendrogram (i.e. tree). tree ( ); 2D ( );
3D ( ); 4D ( ); 5D ( ); 6D ( );
7D ( ).
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Table 1 Determinants of the quality of functional space.

Variable Degree of freedom Relative sum of squares F-value

Type of functional space 6 0.318 135,396

Type of trait 3 0.241 205,666

Number of traits 1 0.006 15,903

Number of species 1 0.006 15,849

Type of functional space × type of trait 18 0.295 41,867

Type of functional space × number of traits 6 0.032 13,494

Type of functional space × number of species 6 0.003 1,452

Type of trait × number of traits 3 0.006 5,176

Type of trait × number of species 3 0.005 4,354

Number of traits × number of species 1 < 0.001 269

Outputs of the linear model testing the influence of four variables and of their six pairwise interactions on the mean squared deviation of the simulated
functional spaces.

Table 2 Effects of the number and type of functional traits and of the total number of species functionally described on the identity of the
best functional space.

Type of traits

Number

of traits

Number of

species

Functional

dendrogram

Multidimensional functional space

2D 3D 4D 5D 6D 7D

Categorical 5 50 0 0 0 0 0 0 100

100 0 0 0 0 0 0.5 99.5

200 0 0 0 0 0 1.5 98.5

400 0 0 0 0 0 0.9 99.1

Ordinal 5 50 0 0 0.3 66.3 32.7 0.7 0

100 0 0 0 54.7 43.5 1.7 0.1

200 0 0 0 41.5 57.7 0.8 0

400 0 0 0 19.9 80.1 0 0

Continuous 5 50 0 0 0 0.1 42.0 49.6 8.3

100 0 0 0 0 26.7 58.1 15.2

200 0 0 0 0 15.4 65.9 18.7

400 0 0 0 0 6.0 71.2 22.8

Mixed 5 50 0 0 0 0.7 10.9 45.4 43.0

100 0 0 0 0 1.9 24.0 74.1

200 0 0 0 0 0.6 8.8 90.6

400 0 0 0 0 0.2 2.6 97.2

Categorical 10 50 0 0 0 0 0 0.2 99.8

100 0 0 0 0 0 0.2 99.8

200 0 0 0 0 0 0 100

400 0 0 0 0 0 0 100

Ordinal 10 50 0 0 0 0 0.9 25.4 73.7

100 0 0 0 0 0.9 12.7 86.4

200 0 0 0 0 0.2 9.6 90.2

400 0 0 0 0 0 7.8 92.2

Continuous 10 50 0 0 0 0 0 0 100

100 0 0 0 0 0 0.1 99.9

200 0 0 0 0 0 0.5 99.5

400 0 0 0 0 0 0.4 99.6

Mixed 10 50 0 0 0 0 0.1 0.5 99.4

100 0 0 0 0 0 0.8 99.2

200 0 0 0 0 0 1.9 98.1

400 0 0 0 0 0.1 3.4 96.5

Values are the percentages of times each type of functional space was the best (i.e. has the minimum mean squared deviation) over the 1000 datasets
simulated for each of the 32 situations. The highest value for each situation is in bold type.
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We found no rule to choose a priori the best functional space.

Spaces with higher dimensionality (i.e. with at least four dimen-

sions) performed the best on average (Table 2, Fig. 2) and the

difference in quality between four- and seven-dimensional

spaces was relatively low, except when only categorical traits

were used to describe species. Importantly, the quality of the

best multidimensional functional space for a given situation

could be several times higher than the quality of the best func-

tional dendrogram or than the quality of a two-dimensional

space (Figs 2 & 3). More precisely, a functional dendrogram

tended to artificially increase the functional distance between

species while low-dimensionality Euclidean spaces tended to

underestimate the actual functional distances between species

(Fig. 3). For instance, in the study case 13% of pairs of species

with a low Gower’s distance (i.e. lower than 0.3) were twice

as distant on the functional dendrogram (standardized

co-phenetic distance higher than 0.6; Fig. 3).

A good functional space has to allow us to discriminate the

different functional strategies, i.e. combinations of trait values

present in the species pool. For instance, in a k-dimensional

space, there are 2k corners available to discriminate contrasted

functional strategies. Functional dendrograms, which could be

considered as one-dimensional diagrams representing a hypo-

thetical hierarchy in functional dissimilarity of species, are thus

less efficient than multidimensional spaces for faithfully repre-

senting a high diversity of functional trait combinations. Indeed,

even if species with high dissimilarity in their trait values are

represented far from each other on a functional dendrogram, a

high proportion of species with similar trait values are also far

from each other (Fig. 3). Functional dendrograms thus bias the

initial distribution of functional distances towards overestimat-

ing the functional dissimilarity between some species pairs.

The importance of dimensionality for representing distances

between objects described with multiple variables has already

been pointed out for community ecology analyses (Legendre &

Legendre, 1998). In contrast, the potential biases of using a

dendrogram on the quality of data representation have until

recently been ignored in functional ecology (but see Chao et al.,

2014).

Categorical traits tended to decrease the quality of the best

functional space (Fig. 2). Indeed, discrete coding of categorical

traits led to a higher proportion of species with high functional

distance, and hence more dimensions are required to faithfully

represent these unique functional strategies. Increasing the

number of traits and/or the number of species described also

tended to increase the number of dissimilar functional strategies

and thus to decrease the quality of the best functional space

(Fig. 2).

As it is hard to predict a priori the identity of the optimal

functional space based on the characteristics of the study case,

we recommend using a pragmatic approach consisting of com-

puting the quality of all the possible spaces. Towards this end, we

provide an R function (‘quality_funct_space’ in Appendix S1)

that computes the mSD for all possible spaces (i.e. dendrograms

and multidimensional spaces up to more than 10 dimensions).

This tool will prevent the computation of functional diversity

indices in a functional space of poor quality and will help to

select an optimal functional space. This pragmatic choice does

Table 3 Effect of the type of functional space on functional diversity patterns in local communities.

Variable

Degree of

freedom

Functional richness Functional entropy

SES niche

filtering

SES limiting

similarity

SES niche

filtering

SES limiting

similarity

Type of representation 6 0.312 0.243 0.083 0.152

Type of trait 3 0.010 0.232 0.098 0.420

Number of traits 1 0.007 0.002 0.014 0.001

Number of species in the regional pool 1 0.122 0.036 0.316 0.022

Number of species in the local assemblage 1 0.222 0.005 0.246 0.087

Type of representation × type of trait 18 0.035 0.084 0.010 0.062

Type of representation × number of traits 6 0.005 0.000 0.002 0.003

Type of representation × no. of species in the regional pool 6 0.091 0.024 0.002 0.005

Type of representation × no. of species in the local assemblage 6 0.009 0.002 0.005 0.006

Type of trait × number of traits 3 0.004 0.029 0.005 0.034

Type of trait × no. of species in the regional pool 3 0.003 0.049 0.005 0.040

Type of trait × no. of species in the local assemblage 3 0.003 0.007 0.002 0.024

Number of traits × no. of species in the regional pool 1 0.000 0.000 0.001 0.000

Number of traits × no. of species in the local assemblage 1 0.003 0.001 0.001 0.000

No. of species in the regional pool × no. of species in the local assemblage 1 0.030 0.005 0.035 0.007

Values are relative sum of squares explained by each variable and pairwise combination of variables, obtained with a Type II ANOVA on a linear model
testing the effects of the type of functional space, type and number of functional traits and species richness at the regional and local scales on the
deviation in functional diversity (richness or entropy) of assemblages simulated under a niche filtering (or limiting similarity) process and assemblages
sorted randomly. Deviation was measured as standardized effect size (SES). Relative sum of squares higher than 0.05 are in bold type.

E. Maire et al.

Global Ecology and Biogeography, 24, 728–740, © 2015 John Wiley & Sons Ltd736



not necessarily imply the selection of the functional space with

the highest quality, as a functional space with a quality close to

this optimum but with a lower dimensionality can have practical

advantages, such as computing time for functional diversity

indices (e.g. functional beta-diversity indices; Villéger et al.,

2014) or feasibility of graphical outputs (e.g. visualizing the

distribution of species in four-dimensional functional space

required only six biplots while with a seven-dimensional space it

required 21 biplots).

As distances between species on the functional dendrogram

or on low-dimensionality spaces often do not accurately reflect

the dissimilarity in traits values between species (Fig. 3), com-

puting an index of diversity using these functional spaces of

poor quality can lead to biased estimates of functional diver-

sity. Functional diversity indices measured in simulated local

assemblages of species revealed that the identity of the func-

tional space significantly affects the detection of non-random

assembly processes (Table 3). Indeed, deviations of functional

diversity between scenarios were not congruent (i.e. they differ

in both intensity and ranking among assemblages) between

indices measured on dendrogram and in spaces with at least

four dimensions (Table 3, Fig. S2). The quality of the func-

tional space built for the regional pool of species thus affected

the assessment of functional diversity in the set of local assem-

blages studied and can ultimately lead to biased estimation

of the strength of the ecological processes that structured

assemblages.

In the study case of the functional biogeography of European

freshwater fish, the three-dimensional functional space had a

quality very close to that of the optimal four-dimensional space,

but the quality of the best functional dendrogram was more

than 50 times lower than that of the optimal functional space.

This magnitude of difference in quality was congruent with that

found using simulated data for 200 species described using five

mixed functional traits (Fig. 2). As a consequence of these dif-

ferences in quality of functional space, the biogeographical

patterns of functional diversity obtained using the three-

dimensional space were congruent with those obtained using

the optimal four-dimensional space while the patterns obtained

using the two-dimensional functional space or the functional

dendrogram were opposite (Figs 4, S2 & S3).

From a biogeographic point of view, the spatial distribution

of fish assemblages across Europe has been shaped by the Qua-

ternary glaciation events (Hewitt, 1999). During glaciations, the

Figure 3 Illustration of the difference in the quality of functional
space between dendrogram and multidimensional spaces. The
top-left panel shows the quality (assessed using mean squared
deviation, mSD) of five functional spaces computed for a dataset
of 246 native fish species described with six functional traits (two
continuous, one categorical, three ordinal): one dendrogram built
using the unweighted pair group method with arithmetic mean
(UPGMA) clustering algorithm, and four multidimensional spaces
(from two to five dimensions) built using a principal coordinates
analysis. The correlation between pairwise distance computed on
species traits (the Gower’s distance) and standardized distance in
each of the five functional spaces are illustrated on the five
remaining panels. Each point represents a pair of species.

Figure 4 (On following page) Consequences of difference in the quality of functional dendrogram and multidimensional functional spaces
when testing biogeographic patterns. Panels on the left show the correlation between species richness and functional richness in 137 fish
faunas. The best functional space according to the mean squared deviation criterion is the four-dimensional space (see Figure 3). Black dots
show observed species and functional richness: the functional diversity (FD) index for the unweighted pair group method with arithmetic
mean (UPGMA) dendrogram and functional richness (FRic) index for two-, three- and four-dimensional spaces. Grey areas and dark-grey
squares represent the mean and 95% confidence interval of expected functional richness given species richness under the null hypothesis
that species were randomly selected among the regional pool. Central and right columns of panels show correlation between the
standardized effect size (SES) of functional richness (under the null hypothesis of random assemblage of species) and the geographical
position of fish assemblages. Correlation values at the top of each panel are Pearson’s coefficients (ns not significant, * P < 0.05, ** P < 0.01,
*** P < 0.001).
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Danube (and to a lesser extent some Mediterranean coastal

rivers) acted as the main refuge for freshwater fishes, and hence

it now hosts most of the European fish fauna (Griffiths, 2006;

Reyjol et al., 2007). Post-glacial fish recolonization from the

Danubian refuge was accompanied by species radiation in some

genera, which produced several congeneric species with similar

functional strategies (e.g. Ketmaier et al., 2008), explaining why

most fish functional strategies are present in all faunas across

Europe (Griffiths, 2006; Reyjol et al., 2007). There is thus a slight

latitudinal gradient in species and functional richness across

Europe and a longitudinal decrease in functional richness

from east to west but of lower magnitude than the decrease in

species richness (Villéger et al., 2013). A significant effect of

longitude and a non-significant effect of latitude on functional

overdispersion are hence expected. These patterns are verified

for functional richness indices computed in three- or four-

dimensional functional spaces. On the contrary, dendrogram-

based functional richness showed an undue significant

latitudinal increase and did not detect the longitudinal gradient

(Fig. 4). These biases are due to the overestimation of functional

richness in north-eastern European assemblages and to the

underestimation of overdispersion in south-western assem-

blages (Fig. S3), while these assemblages have a similar low

species richness (Fig. 4). Thus, the low quality of the functional

dendrogram, because of the overestimation of functional

dissimilarity between some species that are actually functionally

similar, resulted in biased estimates of functional richness, espe-

cially in species-poor assemblages, which ultimately biased the

detection of biogeographical patterns.

To conclude, the analysis of simulated datasets and a real

study case revealed that a poor representation of the functional

distances between species using dendrogram and two-

dimensional functional spaces might lead to erroneous ecologi-

cal conclusions, and we therefore advise using them with

caution. Moreover, although functional ecology and functional

biogeography have developed very quickly over the last decade

(Violle et al., 2014), there is still no objective way to decide how

to represent the functional distances between species, despite it

is a critical step in the accurate assessment of functional diver-

sity. The framework we propose here offers a consensual method

to select an optimal functional space using a relevant index of

quality. We recommend using it to prevent the computation of

biased estimates of functional diversity and hence misinterpret-

ing functional diversity patterns.
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