
Knowledge and Management of Aquatic Ecosystems (2014) 415, 02 http://www.kmae-journal.org
© ONEMA, 2014
DOI: 10.1051/kmae/2014026

Physical habitat and water chemistry changes induced
by logging and gold mining in French Guiana streams

N. Dedieu(1),(2),(3),�, L. Allard(1),(2),(4), R. Vigouroux(2), S. Brosse(1),(4),
R. Céréghino(1) ,(3)

Received April 18, 2014

Revised July 29, 2014

Accepted July 29, 2014

ABSTRACT

Key-words:
neotropical
steams,
headwaters,
reference
conditions,
deforestation,
gold mining

Understanding the effects of disturbances on the physical-chemical qual-
ity of ecosystems is a crucial step to the development of ecosystem
assessment tools. 95 sampling sites distributed among 4 categories of
disturbance, i.e.: reference, logging, formerly and currently gold mining,
were characterized using stream physical and chemical variables. Our
hypotheses were: (i) logging and gold mining activities primarily affect
the physical habitat structure of streams and (ii) both have an effect on
chemical environments through nutrient and/or fine particulate resuspen-
sion. We demonstrate that physical variables describing the river bottom,
and suspended solids discriminate both current and formerly gold mined
sites from reference sites, while, whatever the type of impact encoun-
tered, nutrient concentrations do not prove relevant to measure human im-
pacts. To understand distribution patterns of aquatic organism across FG,
future research should thus aim at examining the match between physical-
chemical and biological classifications of small streams under reference
and impacted conditions.

RÉSUMÉ

Impact de l’orpaillage et de la déforestation sur la chimie de l’eau et l’habitat physique
dans les petits cours d’eau de Guyane Française

Mots-clés :
cours d’eaux
néotropicaux,
tête
de bassin,
condition
de référence,
déforestation,
orpaillage

Comprendre l’effet des perturbations sur les paramètres physico-chimiques de
qualité des eaux est une étape essentielle du développement d’outils d’évalua-
tion. Les petits cours d’eau de Guyane Française représentent 70 % du réseau
hydrographique du département, et sont soumis à de fortes pressions (déforesta-
tion et orpaillage). Nous supposons que l’exploitation aurifère et forestière affecte
principalement la structure physique de l’habitat et que ces deux types d’exploi-
tation ont une influence sur le compartiment chimique par la modification du flux
de nutriments et/ou la remise en suspension de particules fines. 95 sites répartis
en quatre catégories de perturbation (référence, exploitation forestière, orpaillage
actuel et ancien) ont été caractérisés par des variables physico-chimiques. Nous
avons démontré que les variables physiques différencient les sites orpaillés an-
ciens et récents. Les concentrations en nutriments ne sont pas significativement
modifiées par les impacts humains. Afin de mieux comprendre les patrons de dis-
tribution des organismes aquatiques de Guyane Française, le lien entre la physico-
chimie des cours d’eau et les communautés biologiques inféodées en situation de
référence et perturbée doit être étudié.
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INTRODUCTION

Under most water management policies, ecosystem health is defined in terms of similarity to
a near-pristine, undisturbed state (Bailey et al., 2003). In practice, predictions of the physical-
chemical and/or biological conditions to be expected under undisturbed conditions in any
given geographic area are based on the classification of river sites. By knowing what set of
environmental conditions should be encountered at undisturbed (or least impacted) sites, one
can then estimate the degree to which impacted sites are altered by human activity (Bennett
et al., 2011). In addition, physical-chemical classifications of rivers provide a template against
which changes in biological diversity within watersheds can be interpreted in relation to nat-
ural variability and anthropogenic impacts (Van Sickle and Hughes, 2000).
Recent studies in temperate areas have prompted a large amount of characterizations of
reference and impacted physical-chemical environments (e.g., Tudesque et al., 2008). How-
ever, differences in bioclimatic, biogeographic and geomorphological conditions preclude the
transposition of current typological schemes to EU’s overseas regions (see Touron-Poncet
et al., 2014 for a rationale), while limited scientific effort has been directed at typifying rivers
in overseas Europe in terms of physical-chemical (and biological) patterns. Therefore, as a
prerequisite to any methodological development, there is a pressing need to collect environ-
mental information in a standardized manner so that fundamental data can be analyzed in an
integrated way.
French Guiana (FG) is an overseas region of France located on the northern coast of South
America. About 96% of its surface area (over 82 000 km2) is covered by equatorial forest,
which partly belongs to a recently-created National Park. The Guianese primary forest remains
one of the least impacted of the World, however, gold mining and timber have strong impacts
upon river ecosystems. Specifically, the annual gold output in the area is 60 times higher than
25 years ago (Hammond et al., 2007). After the prospection of large rivers, gold industries are
now focusing on smaller inland streams (Cleary, 1990; Hammond et al., 2007). Small streams
(from headwaters to rivers with depth <1 m and width <10 m) represent 70% of all running
waters in FG. Most of small streams are located in forested areas and exhibit high ecological
quality; some if not most of them have never been impacted by any human activity. In light of
recent economic development, our ability to predict both reference conditions and ecosystem
responses to landscape alterations will determine the success of future management actions.
We relied on extensive characterizations of stream physical (particle size, substratum hetero-
geneity) and chemical conditions (e.g., nitrogen, phosphorus) at 95 sampling sites distributed
over 95 streams and representing 4 categories of disturbance: reference (unimpacted), de-
forestation, ancient gold mining, and ongoing gold mining. First, we tested if impacted sites
are randomly located within the river continuum or if they are characterized by particular
local physical features that distinguish them from the references. Our hypothesis was that,
at any given location within a stream system, gold mining and deforestation primarily affect
the physical habitat structure and/or heterogeneity. Second, we tested differences in chem-
ical variables among site categories. Assuming that both deforestation and gold mining af-
fect chemical environments through nutrient and/or fine particulate runoff/resuspension, we
expected that sediment resuspension due to gold mining would result in harsher shifts in
instream environmental conditions.

MATERIAL AND METHODS

> STUDY AREA

This study was conducted in French Guiana (surface area = 83 534 km2), East Amazonia,
from September 2011 to December 2012. The climate is tropical moist with 3000−3400 mm
of yearly precipitation mainly distributed over 280 days. There is a major drop in rainfall (dry
season) between September and December and another shorter and more irregular dry pe-
riod in March. The maximum monthly temperature averages 33.5 ◦C (32.1−35.8 ◦C), and the
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Figure 1
Map of French Guiana showing the main rivers and the location of the sampling sites.

monthly minimum averages 20.3 ◦C (19.7−21 ◦C). French Guiana’s stream systems are or-
ganized around seven large rivers (Maroni, Kourou, Mana, Sinnamary, Comté, Approuagues,
and Oyapock rivers); however, the “small streams” sampled in this study (water depth <1 m;
stream width <10 m) represent ca. 80 000 km in total length, i.e. 70% of all running waters in
the region. We did not considered larger streams and rivers to focus on comparable ecosys-
tems located in the upstream part of the river continuum.

> SAMPLING SITES AND ENVIRONMENTAL VARIABLES

Our 95 sampling sites were distributed over 95 small streams belonging to FG’s main river
basins (Figure 1). It should be noted however that the sampling effort was higher in the
Northern part of FG, due to the difficulty to access southern FG. In this specific area cov-
ered by dense rainforest and without road networks, complex logistics limited our ability
to sample a larger number of sites. We thus managed to collect some samples from the
main southern river basins (Figure 1). All sites were sampled during the dry season in 2011
and 2012 (September−December). Indeed, pollution is detected less efficiently during high
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flows because of dilution. In addition, most remote sites cannot be reached (and therefore
monitored) during the rainy season. Each site was sampled once, and the sites sampled
in 2012 are hence distinct from those sampled in 2011. Based on expert knowledge and
field observations, sampling sites were categorized into four a priori groups corresponding to
four types of anthropogenic pressure. Reference sites (Ref, n = 57) were defined as sites not
subjected to anthropogenic impacts such as gold mining, deforestation, chemical pollution,
agricultural or urban runoff. Deforested sites were subjected to logging for wood products
and timber (Log, n = 15), under the supervision of the National Forest Office (ONF). The ONF
manages a sustainable logging industry based on strict plans intended to minimize impacts
on the environment. The remaining sites were formerly subjected to gold mining but no longer
exploited (Fog, abandoned mining n = 9), or currently subject to gold mining (Cug, n = 14).
Either formerly or currently gold mined sites refer to illegal gold mining activity. “Illegal” min-
ing refers here to so-called “informal” mining, i.e., small-scale traditional (or artisanal) mining
which also occurs in most South American countries (Hammond et al., 2007). Mercury is
used for gold amalgamation during the mining process, and about 30% of the mercury is re-
leased into the river. Mercury concentration in the water column is however insignificant (see
Coquery et al., 2003; Maury-Brachet et al., 2006 for documented cases in FG). In addition,
the effects of heavy metals on the composition of biological communities expected to form
Biological Quality Elements in subsequent developments are not obvious (De Jonge et al.,
2008). Although mercury was not taken into account in our study, it should be noted however
that river sediments have a strong adsorption capacity for heavy metals (Pfeiffer et al., 1989;
Roulet et al., 1999) and may certainly be a relevant parameter to quantify the impact of gold
mining. Mercury can subsequently accumulate in plant and animal tissues before entering
food chains – in French Guiana some concentrations in edible parts of locally consumed fish
can surpass the advisory level for human consumption, thus forming a key concern for human
health (Durrieu et al., 2005).
Stream scale variables, namely elevation above sea level, distance from the source, and slope
were obtained from Geographic Information System (GIS, ESRI ArcGis 10). These variables
characterise the location of sampling sites within the upstream-downstream river continuum.
Site scale variables were chosen to describe the heterogeneity of riverbed substrate and
habitat availability at each site. They were recorded directly in the field and accounted for the
percentage composition of organic and mineral substrate types, using the standardized pro-
tocol by Souchon et al. (2000). These variables included: %leaf litter (Litt), %submerged roots
on the banks (Bank), %submerged vegetation, mostly macrophytes (Macr), %woody debris
(Wood), %Silt, %Sand (particle size <2 mm), %Gravel (Grav 2−25 mm), %coarse substratum
(Coar > 25 mm). Coarse substrates being scarce in French Guiana, this category of mineral
substrate included pebbles, boulders, and/or rocky outcrops. In addition, we recorded the
stream width (Widt, m) and water depth (Dept, m). The forest canopy coverage (Fore) was
evaluated visually, from 0 to 100% (Table I). We also measured chemical variables accounting
for the chemical impairment of stream ecosystem (PO3−

4 and NO−3 ) by human activities and for
the transport of solids (Total Suspended Solid and Turbidity) (Table II). Turbidity was measured
directly in the field using an Eutech Instruments Turbidimeter (TN-100). Other chemical anal-
yses were carried out at Hydreco Laboratory, Petit-Saut, based on water samples taken at
each site and immediately frozen. Chemical analyses followed standard methods summarized
in AFNOR (2000−2005).

> DATA ANALYSIS

We first used a Principal Component Analysis (PCA) to ordinate the sites according to topo-
logical and physical variables, and to bring out potential shifts in physical conditions follow-
ing anthropogenic disturbance. Prior to analysis, continuous variables were log-transformed,
and discrete variables expressed in percentages were Arcsin-transformed. Plots of the first
two ordination axes usually capture most of the variance and consequently contain most
of the information that is likely to be interpretable (Waite et al., 2000). Neighbouring sites
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Table I
Environmental variables used to describe the four streams category (Ref : reference; Log; logging; Fog:
formerly gold mined; Cug: current gold mined). Values indicate mean ± SD.

code unit Ref Log Fog Cug
Stream scale variables

Elevation Elev m a.s.l. 131.3 ± 153.7 57.2 ± 18.1 80.1 ± 36.3 90.8 ± 24.9
Distance from

Dist km 3.3 ± 3.8 1.9 ± 2.4 3.6 ± 2.6 5.61 ± 3.4
headwater source
Slope Slop ‰ 4.7 ± 3.6 4.7 ± 3.4 4.7 ± 3.19 3.84 ± 2.6

Site scale variables
Bank Bank % 12.1 ± 13.2 14.1 ± 12.1 9.2 ± 7.2 7.79 ± 5.4
Macrophyte Macr % 3.1 ± 17.4 3.7 ± 13.7 2.2 ± 6.5 0.83 ± 2.7
Litter Litt % 24.1 ± 19.8 24.1 ± 23.9 16.7 ± 19.8 25.5 ± 31.3
Woody debris Wood % 14.1 ± 12.9 20.9 ± 22.3 13.2 ± 11.6 7.26 ± 7.9
Silt Silt % 11.9 ± 18.1 16.3 ± 17.5 21.7 ± 12.3 26.2 ± 27.7
Sand Sand % 47.2 ± 31.9 49.5 ± 24.7 26 ± 28.17 16.4 ± 20.4
Gravel Grav % 20.7 ± 22.9 11.4 ± 15.4 35.7 ± 27.8 30.7 ± 31.6
Coarse substratum Coar % 19.6 ± 25.9 12.7 ± 15.4 26.6 ± 25.5 26.7 ± 27.8
Width Widt cm 379.9 ± 231.5 429.3 ± 271.2 393.6 ± 198.7 394.3 ± 187.5
Depth Dept cm 25.5 ± 11.9 26.7 ± 14.2 23.1 ± 7.9 27.9 ± 13.3
Forest coverage Fore % 74.8 ± 16.3 55.1 ± 28.3 57 ± 27.4 64.6 ± 23.6

Table II
Chemical variables used to assess human disturbance on the four streams category (Ref: Reference;
Log: logging; Fog: formerly gold mined; Cug: current gold mined). Values indicate mean ± SD.

Chemical variables unit Ref Log Fog Cug
Turbidity NTU 5.31 ± 22.5 5.51 ± 11.1 32.5 ± 93.4 27.6 ± 43.9
NO−3 mg/L 0.31 ± 0.16 0.25 ± 0.21 0.34 ± 0.08 0.25 ± 0.15
PO3−

4 mg/L 0.04 ± 0.02 0.04 ± 0.05 0.02 ± 0.02 0.02 ± 0.02
Total suspended solid mg/L 6.1 ± 12.8 8.4 ± 12.9 9.9 ± 14.4 60.4 ± 155.4

in the scatterplots were expected to define areas with similar physical environments. Con-
versely, sites having a large distance to each other were expected to be distant in the feature
space, according to environmental characterization. In order to compare distributions of sites
according to disturbance types, a Kruskal-Wallis (KW) test was performed on the site co-
ordinates of the two first axes of the PCA. To further bring out relationships between water
chemistry, local environments and disturbance, significant differences among a priori groups
were also tested using Kruskal-Wallis tests on the raw values of measured parameters. Then,
significant differences in physical characteristic between a priori groups of sites (Ref, Log,
Fog, Cug) were further assessed using Wilcoxon tests.
As different sites were sampled in 2011 and 2012, the sampling year was not informative and
we hence pooled the two years data. All computations were performed using the R Software
(R Development Core Team, 2003), the ADE-4 (Thioulouse et al., 1997) and Vegan (Oksanen
et al., 2013) package.

RESULTS

Eigenvalues for axis 1 and 2 of the PCA were 3.43 and 2.26, respectively (Figure 2a). The
first and second axes explained 24.53% and 16.7% of the overall variance, respectively.
The distribution of sampling sites in the scatterplot did not show clear clumps according to
environmental characteristics, but rather displayed a predictable, upstream to downstream
gradient. Axis 1 thus displayed a gradient of elevation, slope and substratum size (from high
(left) to low (right)). These parameters are related to the river competence (i.e. the maximum
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Figure 2
(a) Principal Component Analysis (PCA) biplot showing the distribution of the 95 sites according to
environmental variables (see table I for acronyms). Rectangles: reference sites; triangles: logged sites;
open circles: formerly gold mined sites and filled circles: currently gold mined sites. (b) Boxplots of the
coordinates of the sites on the first axis. (c) Boxplots of coordinates of the sites on the second axis.
Ref: reference sites; Log: logged sites; Fog: formerly gold mined sites; Cug: currently gold mined sites.
(*: p-value < 0.1; ***: p-value < 0.01).

size or weight of material a river can transport). Axis 2 accounted for stream width and depth,
and distance from source (from high (upper area) to low (down)).

Sites subjected to current and former gold mining were mostly distributed along axis 2, while
sites subjected to logging were distributed along axis 1. Only reference sites and sites sub-
jected to current gold mining differed significantly in their distribution along axis 1 (Figure 2b),
currently exploited sites being more concentrated in the upstream areas. When the distribu-
tion of sites was examined along axis 2 (Figure 2c), both formerly and currently gold mined
sites differed from other sites, while reference sites and sites subjected to logging did not
show significantly different distributions.

Stream scale variables showed significant differences between impairment categories. The
mined sites had coarser substrates than the references and logged sites, as shown by a sig-
nificant difference in the percentage composition of mineral particles. Significant differences
were found in %sand (KW-chi-square = 15.3776, df = 3, p-value = 0.001521), %silt (KW-chi-
square =12.2781, df = 3, p-value = 0.006489) and %gravel (KW-chi-square = 7.6945, df = 3,
p-value = 0.04277). Such a difference between reference and mined sites holds true for both
the formerly and currently gold mined sites.

Considering chemical variables, neither PO3−
4 and NO−3 (Figures 3 and 3b), nor suspended

solids and turbidity (Figures 3c and 3d) showed significant differences between reference
sites and sites subjected to logging. Gold mining did not alter PO3−

4 and NO−3 concentrations
(Figures 3a and 3b), however, stream turbidity values (Figure 3d) were significantly different
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Figure 3
Boxplots of chemical variables (a) PO3−

4 (mg/L), b) NO−3 (mg/L), c) Total Suspended Solid (mg/L) and d)
turbidity (NTU)) in reference (Ref), logged (Log), formerly goldmined (Fog) and currently goldmined (Cug)
sites. Limits of the box represent the first and third quartiles, bold line is the median, and whiskers are
extreme values. Stars indicate the significance of Kruskal Wallis test between classes (**: p-value < 0.05).

from values observed at reference and logged sites (see appendix I for outputs of Wilcoxon
tests).

DISCUSSION

Given the contrasted types of human activities that affect stream ecosystems in FG, we ex-
pected significant differences in physical-chemical characteristics of impaired streams in re-
lation to disturbance type.
Sites subjected to logging (deforestation) had finer bottom substrates than the reference sites.
This can be related to increased inputs and deposits of fine particles, brought to the stream
through tractor tracks and gravel road creation for logging trucks (Forman and Alexander,
1998). Such a tendency is triggered under equatorial climate, where harsh rains (rainy sea-
son) have a strong erosive effect on bare lands (Dudgeon, 2008). Despite increased siltation,
suspended solids and water turbidity were not affected, highlighting the moderate effect of
logging on streams in FG. It should be noted however that logging is strictly controlled in FG,
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in order to minimise environmental impacts. Specific measures include the absence of clear-
cutting, and the protection of the riparian zone where logging is forbidden. In the same way,
logging trucks cannot be used during the rainy season and cannot cross streambeds, thus re-
ducing sediment load to the aquatic ecosystems (Panchout, 2010). Such management efforts
seem to prove efficient, as we did not detect any significant effect on turbidity and other
chemical variables that are usually strongly sensitive to intensive logging activities. Specif-
ically, leaching of soils and canopy opening are known to modify nitrogen and phosphorus
fluxes to the aquatic ecosystem (Sweeney et al., 2004; Neill et al., 2006).

The river bottom of most gold mined sites was characterised by a dominance of gravels.
This trend is not related to natural processes. Gold deposits are collected by washing the
soils adjacent to the streams with high pressure water jets, and gravels are then sieved and
released to the stream (Hinton et al., 2003), therefore increasing their prevalence over the
streambed. During these operations, the streams also receive the draining water that contains
a high load of sediments (Watts et al., 2003), explaining the higher turbidity at gold mined sites
(see also Mol and Ouboter, 2004; Brosse et al., 2011).

Contrary to our expectation that gold mining, through the predicted clearing of the riparian
forest and soil leaching, should increase stream eutrophication (see Hammond et al., 2007;
Palmer et al., 2010), we did not find any significant change in nutrient loads (PO3−

4 and NO−3 ) in
gold mined sites. This result can be explained by the illegal nature of the exploited sites, which
typically remain hidden under the canopy and do not host more than 30−40 workers (Hinton
et al., 2003). There is therefore no deforestation at these sites, and hence no drastic shift in
nutrient fluxes. This however does not mean that the ecosystem is not impaired. In particular,
it has been demonstrated that both fish and diatom assemblages are strongly affected by
the turbidity generated by small scale gold mining through habitat clogging and changes in
light penetration over the bottom (Cleary, 1990; Mol and Ouboter, 2004; Brosse et al., 2011;
Tudesque et al., 2012).

It is worth noting that turbidity remained significantly higher in formerly gold mined sites than
in reference sites. This is probably due to fine sediment storage in the stream pools, so that
these sediments can be re-suspended in the river column when river discharge increase dur-
ing the frequent rain events. Therefore, temporary physical disturbances of stream ecosys-
tems can persist in time, explaining why biological assemblages do not recover after stopping
mining (e.g., fish and diatom, see Brosse et al., 2011; Tudesque et al., 2012).

Finally, the comparison of formerly and currently gold mined sites revealed a shift of activities
towards the upstream sites. This might be afforded to two non-mutually exclusive reasons.
First, the rarefaction of the gold resources as well as the rise of gold prices brought gold
miners to move deeper in the forest (Cleary 1990; Hammond et al., 2007) and exploit more
remote upstream sites. Second, the increased control of illegal gold mining by French au-
thorities (Coppel et al., 1998) forces illegal miners to exploit those remote sites and to remain
as inconspicuous as possible. This probably explains why in most of our sites we did not
observe deforestation that would make the mining sites easily detected (Hinton et al., 2003).

In conclusion, we demonstrated that, under unimpacted conditions, there is no clear cluster-
ing of freshwater streams in French Guiana, thus complicating aims to set up a stream typol-
ogy based on physical characteristics. Also, whatever the type of impact encountered in small
streams of FG, nutrient concentrations did not prove relevant to measure human impacts.
Logging did not result in detectable impacts on stream physical characteristics, probably
because this type of activity is strictly managed and controlled by local stakeholders. How-
ever, site scale variables that describe the riverbed, habitat and suspended solids (i.e. simple
physical measurements) clearly segregated both currently and formerly gold mined sites from
reference sites. These results highlight the persisting, adverse effect of mining on the benthic
habitat. Assuming that the structure of biological communities in streams are not due to ran-
dom processes (Minshall and Petersen, 1985) but is strongly influenced by physical factors
such as stream bed morphology (Wallace and Webster, 1996), hydrological conditions (Power
et al., 1988), one can assume that substrate homogenization by anthropogenic activities will
largely constraint the benthic community structure. Moreover, invertebrates or diatoms are
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tightly integrated into the structure and functioning of the benthic ecosystem, one may expect
dramatic decreases in the biological quality of headwater streams with the shift of gold min-
ing towards the upstream areas. To design potential biological indication tools of impairment,
future research should thus aim at examining the match between physical-chemical and bio-
logical classifications of small streams under reference and impacted conditions.
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