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 Species distribution models (SDMs) link species occurrences to environmental descriptors using species and environmental 
data that are often recorded at diff erent grain sizes. Th e upscaling process implied by grain size matching between species 
data and environmental data may aff ect the observed species distribution and thus might also modify the SDM-derived 
species distribution. Here we used fi ve virtual species with diff ering range sizes to determine the eff ects of grain size on 
SDM-derived distribution area. We showed that the increase of SDM-derived distribution area with grain size is mainly 
due to the geometric increase of the area of the observed distribution range used to build the SDMs. Models based on 
presence – absence data that were built using the initial prevalence in the calibration dataset and the maximization of TSS 
or Kappa as cut-off  threshold accurately predicted the observed area whatever the grain size and species range size. In 
addition we found that the commonly used evaluation measures (AUC, TSS and Kappa) cannot be used to evaluate the 
accuracy of SDM-derived distribution areas. Th us, the grain size of the data used to feed SDMs has to be chosen carefully, 
depending on the data quality and the goals of the study.   

 Th e grain size of the data used to feed species distribution 
models (SDMs) varies with the environmental and climate 
variables considered as well as with the source of occurrence 
data, the extent, and the location of the region considered 
(Guisan and Th uiller 2005). Previous studies have focused 
on the eff ects of grain size on model prediction performance 
(Guisan et   al. 2007), but the infl uence of grain size on 
the SDM-derived distribution area (i.e. the surface of the 
predicted distribution range) remains a poorly addressed 
question. Seo et   al. (2009) fi rst devoted a paper entirely to 
this question and showed that the SDM-derived distribution 
areas of nine tree species could undergo up to a four-fold 
increase when increasing the grain size from 1    �    1 km 2  
to 64    �    64 km 2 . Th ey however did not identify the sources 
of this increase. Similarly, Hu and Jiang (2010) modelled
the potential distribution of a rare gazelle and noticed a 
sharper increase in the predicted species distribution area 
(more than 15-fold increase) when increasing the grain size 
from 1    �    1 km 2  to 32    �    32 km 2  despite a slight decrease in 
model quality through upscaling. Th e consistency of these 
trends for various organisms including both plants (Seo 
et   al. 2009) and animals (Hu and Jiang 2010) suggests that 
the species distribution area increase through grain size 
increase could have its root in methodological sources. 

 Increasing the operational grain size obviously induces 
a geometric increase of the observed species distribution 
area. Th is geometrical area increase is sensitive to the spatial 

range shape measured as the mean number of empty neigh-
bours around occupied cells (i.e. the fragmentation level 
of the distribution, Fig. 1). Indeed, if a species is present in 
only one out of four adjacent cells, merging these four 
cells when upscaling will lead to a four-fold area increase, 
whereas merging the cells will not aff ect the area if the 
species is present in the four cells. Th e increase of the 
observed area with grain size will in turn aff ect the SDM-
derived species distribution area, explaining why Seo et   al. 
(2009) found that the predicted species distribution area 
increase depended on the species range size. Nevertheless, 
the relationship between observed species distribution 
area and SDM-predicted area through upscaling, as well as 
the sources of variation of SDM-derived distribution areas 
through upscaling, remains to be clarifi ed. 

 Here, we tested how increasing the grain size aff ects 
observed species distribution areas and in turn SDM-
predicted areas. Five virtual species with known range 
size were created to measure how the observed and SDM-
derived distribution areas vary through the upscaling pro-
cess. We fi rst assessed how the spatial range shape of the 
distribution range aff ected the observed species distribution 
area increase through upscaling. We then determined how 
the SDM-derived distribution areas were linked to the 
observed areas and how this relationship was aff ected by 
species range size, species prevalence in the calibration 
dataset, cut-off  threshold choice and grain size. Finally, 
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we investigated how grain size aff ected model accuracy using 
model quality indices commonly found in the literature.  

 Material and methods  

 Virtual ecological niches and predictor variables 

 Th e eff ect of grain size on model predictions was tested 
using virtual species for which the presence only depended 
on climate variables. Th e procedure, although somewhat 
unrealistic from an ecological point of view, was designed to 
avoid 1) biases due to unmeasured environmental factors 
and 2) misevaluation of model quality associated to misclas-
sifi cation of sites (false absences). 

 Th e fi ve virtual species were mapped over France at a 
30 ″   �    30 ″  resolution. Six climate variables were extracted 
over France from the 30 ″   �    30 ″  resolution WorldClim 
layers for the period 1961 – 1990 (Hijmans et   al. 2005): 
1) precipitation in the driest quarter of the year and 2) in the 
wettest quarter; 3) average monthly precipitation; 4) mean 
temperature of the coldest quarter and 5) of the warmest 
quarter; and 6) annual mean temperature. Th ese variables 
were chosen as they are related to the ecological requirements 
of numerous species, and have often been used in SDMs 
(Th uiller et   al. 2005, Marini et   al. 2009, Buisson et   al. 2010). 

 Th e virtual species distributions were delineated by 
constructing two synthetic climate variables (Jimenez-
Valverde and Lobo 2007), since the six variables show clear 
correlation structure. A normalized principal component 
analysis (PCA) was computed on the six climate variables 
and the fi rst two axes of the PCA, which accounted for 

93% of the total variance, were kept as synthetic variables. 
In the two-dimensional space created by these two orthogo-
nal axes summarizing climatic variation across France, the 
virtual species niches were defi ned as discs centred on 
coordinates (0,0). All geographic cells falling within the disc 
for the pair of climate variables were considered as 
the observed distribution range of the virtual species in 
France. Using fi ve diff erent disc radii, fi ve virtual species 
were created, covering 1, 5, 15, 30 and 60%, respectively, 
of all cells available in France (Fig. 2), so as to cover species 
with diff ering range sizes.   

 Sampling of the virtual species 

 Among the 912730 30 ″   �    30 ″  cells covering the area of 
France, 5000 cells were sampled according to a spatially 
random selection. Th is operation was repeated 100 times, 
giving rise to 100 datasets. As a presence – absence ratio of 
1:1 (i.e. a prevalence of 0.5) has been recommended in 
some studies whereas others used the initial prevalence 
(Jimenez-Valverde and Lobo 2006, Buisson et   al. 2008) 
i.e. the presence – absence ratio as obtained through the ran-
dom sampling process, both were considered in this study. In 
the initial prevalence all the cells were kept whatever was the 
prevalence. In the fi xed prevalence of 0.5, all presence cells 
were kept and absence cells were selected randomly from the 
remaining sampling cells. When insuffi  cient absence cells 
were available, all absence cells were kept and presence 
cells were randomly selected to balance the prevalence.   

 Grain sizes and upscaling 

 Seven grain sizes were selected: 30 ″   �    30 ″ , 1 ′     �    1 ′ , 2 ′   �    
2 ′ , 4 ′   �    4 ′ , 8 ′   �    8 ′ , 16 ′   �    16 ′  and 32 ′   �    32 ′  (approximately 

SRS=7.5 SRS=5

Upscaling

Ainc=4 Ainc=1

  Figure 1.     Conceptual representation of the spatial range shape 
(SRS, measured as the mean number of empty neighbours around 
occupied cells) and of the area increase (Ainc) through upscaling. 
Two initial range shapes with the same initial occupied area 
are represented. Area increase through upscaling was four-fold for 
the left panels, whereas area did not change through upscaling 
for the right panels.  

  Figure 2.     Th e geographic niches of the fi ve species over France. 
Each niche contains the smaller ones. Grey scale represents 
diff erent species range sizes expressed as proportion covered relative 
to the study area.  



780

and A inc  to test whether the increase of species distribution 
areas was dependent on the spatial range shape.   

 Effect of grain size on SDM-derived distribution area 

 Regarding SDM outputs, we fi rst tested the model ’ s ability 
to predict the observed area. We evaluated the correlation 
between observed and SDM-derived distribution areas. Th e 
ratio between observed and SDM-derived distribution areas 
was then calculated for each grain size. Th is enabled us to 
view the eff ect of grain size on the accuracy of the SDM-
predicted distribution area after removing the geometric 
increase of the observed area. We assessed the results for each 
species, each prevalence in the calibration dataset and each 
cut-off  threshold. Th en, for each species, we used a linear 
model to partition out the variability in the ratio between 
observed and predicted areas due to each of the other param-
eters (grain size, prevalence in the calibration dataset and 
cut-off  threshold) by using the ratio between the variance 
explained by one factor and the total variance (Dormann 
et   al. 2008).   

 Model accuracy 

 To assess spatial congruence between the observed and 
the predicted niche, model accuracy was evaluated using 
three commonly used metrics: the area under the ROC 
curve (AUC), a threshold-independent measure (Hanley and 
McNeil 1982); Kappa (Cohen 1960) and TSS (Allouche 
et   al. 2006), that are two threshold-dependent measures. 
We also plotted a map of omission and commission errors. 
For each species, we counted, over the 100 models built 
using the 100 diff erent calibration datasets, the percentage of 
mispredicting models in each cell. Th is was done at each 
grain size.    

 Results 

 Upscaling the grain size from 30 ″   �    30 ″  to 32 ′   �    32 ′  
caused a sharp increase in observed species distribution areas 
(a 1.8-fold increase for the common species, and up to 
22-fold for the rarest species) (Fig. 3A). Th e species distri-
bution area increased exponentially with grain size (Pearson 
correlation, r    �    0.99, p    �    0.001). Th rough upscaling, the 
increase of species distribution areas (log-transformed) was 
signifi cantly linked to the spatial range shape (Fig. 3B) as 
it was strongly positively correlated to the number of empty 
cells around occupied cells (Pearson correlation r    �    0.99, 
p    �    0.001). Th e increase of species distribution areas was 
therefore more pronounced for rare species, which distribu-
tion range was more fragmented (2.9 empty neighbours 
for the rarest species vs 0.3 for the common species at the 
fi nest grain size, Fig. 3B). 

 Th e total number of points in the calibration dataset 
exhibited a slight decrease for the four smaller grain size 
changes and then sharply decreased, from 4200 to 260 
sampling points (Fig. 4A). Upscaling slightly aff ected 
the occurrence of the species in the sampling (calibration 
and test) datasets except for the largest grain sizes (i.e. from 

from 1    �    1 km 2  to 60    �    60 km 2   ) (Seo et   al. 2009, Hu and 
Jiang 2010). Climate variables and species presence or 
absence were upscaled from the original 30 ″  resolution 
into these coarser resolution grids. Predictor variables were 
upscaled using the mean value of the merged predictor vari-
ables. A  ‘ presence ’  was assigned to a coarser cell when one or 
more presence records were found in the merged cells. 

 In the sampling dataset, a cell belonged to the dataset if 
it contained at least one cell occurring in the dataset at the 
fi nest grain size. Sample size therefore decreased through 
upscaling as an upscaled cell contains one or more initial 
sampling cells. In the fi xed prevalence of 0.5, the prevalence 
was balanced at each grain size as it was done at the 
smallest one. Th is gave rise to a total of 7000 distribution 
datasets (100 sampling datasets    �    5 species    �    7 grain sizes    �    
2 presence – absence ratio). Each of these 7000 datasets was 
randomly split into two parts: two-thirds of the data were 
used to calibrate the SDMs and the remaining third was used 
as a test set.   

 Models 

 We used an ensemble modelling approach (Ara ú jo and 
New 2007). Five classical SDMs (i.e. generalized linear 
models (GLM); generalized additive models; classifi cation 
and regression trees; discriminant factorial analysis (DFA) 
and Random Forest) (Buisson et   al. 2010) were run for 
each species, at each grain size, using the six climate 
variables. For GLMs and DFAs, squared variables were 
included in the model to deal with non-linearity. Th e prob-
ability of presence of each species was predicted across 
the whole region. Th en a mean ensemble model was built 
by averaging the probabilities of presence from the fi ve 
models and the resulting probability of presence was con-
verted into presence – absence data using three diff erent 
cut-off  thresholds commonly employed (Liu et   al. 2005, 
Jimenez-Valverde and Lobo 2007): 1) by maximizing the 
percentage of presences and absences correctly predicted 
i.e. by maximizing the TSS, 2) by maximizing the Kappa, 
3) by using the prevalence of the calibration dataset. We 
thus obtained 600 (100 datasets    �    2 presence – absence ratios 
in the calibration and test sets    �    3 cut-off  thresholds) pre-
dicted niches at each grain size and for each species.   

 Effect of grain size on observed area 

 All the distribution areas were evaluated as the number 
of occupied 30 ″   �    30 ″  cells (or pixels) included in the 
considered range. We fi rst evaluated the observed distribu-
tion areas on each of the seven grain sizes and verifi ed that 
observed areas increased exponentially with grain size. We 
then tested in which way this increase from one grain size to 
the following was linked to the spatial range shape of the 
observed niche. For each species and each grain size (except 
the coarsest one), we calculated the mean number of empty 
cells (N emp ) adjacent to the occupied cells (i.e. the number 
of empty cells among the eight nearest cells). We then 
calculated the species distribution area increase (A inc ) as 
the ratio between the distribution areas measured for two 
successive grains and assessed the relationship between N emp  
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were highly signifi cant for most species whatever the species 
range size and the prevalence in the calibration dataset 
(r    �    0.93, p    �    0.001 and r    �    0.80, p    �    0.05, respectively). 
Th e only exceptions were when a prevalence of 0.5 was 
used for both the rarest species (1% of the study area) 
particularly using Kappa maximisation as cut-off , and the 
most abundant species (60% of the study area) using 
TSS maximisation as cut-off  (Supplementary material 
Appendix 1, Table A1, A2). Th e ratio between observed 
and SDM-derived distribution area varied slightly, and the 
variance was mostly explained by the cut-off  threshold and 
the grain size (Table 1). 

 Whatever the prevalence in the calibration dataset 
and cut-off  threshold considered, SDM predictions of 
common species (15, 30 and 60% of the study area) showed 
an increase in SDM-derived distribution area ranging 
from 1.5 to 5-fold through upscaling (Fig. 5, Supplementary 
material Appendix 1, Fig. A2). More precisely, all SDMs 
accurately predicted the common species distribution areas, 

8 ′   �    8 ′  to 32 ′   �    32 ′ , Fig. 4A). Whatever the species, occur-
rence fi rst slightly increased with grain size (from 30 ″   �    30 ″  
to 4 ′   �    4 ′ ), as increasing the cell size also increased the 
number of cells intersecting with the niche. For larger 
grain sizes (8 ′   �    8 ′  to 32 ′   �    32 ′ ), the occurrence decreased 
due to a decline of the total number of cells in the datasets, 
although rare species had more stable occurrences than 
abundant ones. Meanwhile, the prevalence of the species in 
the sampling dataset increased with grain size, especially 
for rare species (Fig. 4B). In addition, for the fi ve species, 
grain size increase through upscaling gradually modifi ed the 
shape of the environmental niche. At smaller grain sizes 
the niche was compact but shifted towards a more dispersed 
pattern at higher grain sizes (Supplementary material 
Appendix 1, Fig. A1). 

 Most of the SDM-derived distribution areas increased 
exponentially with grain size. Th e Pearson correlation coef-
fi cients between grain size and the log of the area, as well 
as between SDM-derived and observed distribution areas 

  Figure 4.         (A) Number of species occurrences in response to the upscaling process. Th e mean number of available sampling cells through 
upscaling is indicated by a dashed line. (B) Species range size expressed as proportion covered relative to the study area. Symbols represent 
virtual species range sizes at the smallest grain size. Circles: 1%; squares: 5%; diamonds: 15%; up triangles: 30%; down triangles: 60%. 
Grey scale as in Fig. 2.  

  Figure 3.     Observed distribution area increase through upscaling. (A) Ratio between the observed distribution area at the 30 ″   �    30 ″  
grain size and the six larger grain sizes. (B) Relationship between the observed distribution area increase (i.e. the ratio between the 
area measured on two successive grains, log-scaled) and the mean number of empty neighbours adjacent to occupied cells (for the smaller 
grain size). Th e dashed line represents the linear relationship between the area increase and the number of empty neighbours (r    �    0.99, 
p    �    0.001). Symbols represent virtual species range sizes expressed as proportion covered relative to the study area. Circles: 1%; squares: 
5%; diamonds: 15%; up triangles: 30%; down triangles: 60%. Grey scale as in Fig. 2.  
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the observed one considered on the same grain size (on aver-
age over grain sizes) and 12.26 ( �    7.35) at the smallest 
grain size for the rarest species (Supplementary material 
Appendix 1, Fig. A2). 

 Using an initial prevalence in the calibration dataset, 
the increase of SDM-derived distribution area for rare spe-
cies through upscaling was strongly infl uenced by cut-off  
threshold selection (Fig. 5). Th e prevalence cut-off  provided 
results similar to those obtained using a prevalence of 0.5. 
Th e SDM-derived distribution area showed an 5-fold 
increase through upscaling. Ratio analysis showed that the 
SDM-derived distribution area was on average 4.83 ( �    2.02) 
times larger (7.91 ( �    0.86) times larger at the smallest 
grain size for the rarest species). On the contrary, the models 
using Kappa and TSS cut-off  as thresholds produced SDM-
derived distribution area increases through upscaling 
similar to those observed for the observed niche (Fig. 5). 
Th e two cut-off  threshold models accurately predicted both 
species distribution areas, as they predicted areas, which were 
on average 1.40 ( �    0.51) times larger than the observed 
ones measured on the same grain size (Fig. 5). 

 Concerning model predictive accuracy, the AUC slightly 
decreased with grain size (Fig. 6, Supplementary material 
Appendix 1, Fig. A3). Th is decrease was greater for rare 
species and for large grain sizes. Th e pattern did not diff er 
among prevalence in the calibration and test sets. A similar 
tendency was recorded for Kappa, TSS, sensitivity and 
specifi city (Fig. 7, Supplementary material Appendix 1, 
Fig. A4). Only the Kappa of the rarest species models built 

as they predicted an area, which was on average 1.02 ( �    
0.11) times larger than the observed one measured on the 
same grain size (Fig. 5, Supplementary material Appendix 1, 
Fig. A2). 

 With regard to rare species (1 or 5% of the study area), 
SDM predictions were strongly aff ected by the prevalence 
(initial or 0.5) and the cut-off  threshold (Kappa, TSS 
or prevalence). Using a prevalence of 0.5, SDM-derived dis-
tribution area increased through upscaling between 3 
and 9-fold (Supplementary material Appendix 1, Fig. A2). 
Th ese models strongly overpredicted the rare species distri-
bution areas (except at very large grain size). Th ey predicted 
a species distribution area 5.06 ( �    3.90) times larger than 

  Figure 5    .     SDM predicted distributions areas through upscaling using initial prevalence in the calibration dataset.  ( A, B, C) Mean ratio 
between the predicted distribution areas at the 30 ″   �    30 ″  grain and the six other grains sizes (log-scaled). (D, E, F) Mean ratio between the 
observed and the SDM-derived distribution areas (log-scaled). In each case, the SDM-derived area was measured on the grain size at 
which the model was built and compared to the observed area measured on the same grain size. Cut-off  thresholds are the maximisation of 
the TSS (A, D); the maximisation of the Kappa (B, E); the prevalence in the calibration dataset (C, F). Symbols represent virtual species 
range sizes expressed as proportion covered relative to the study area. Circles: 1%; squares: 5%; diamonds: 15%; up triangles: 30%; down 
triangles: 60%. Grey scale as in Fig. 2.  

  Table 1. Analysis of variance (ANOVA) of the ratio between observed 
and SDM-derived range sizes. Using a linear model, the variability 
was partitioned out in the ratio between observed and predicted 
areas due to each of the other parameters (grain size, prevalence 
in the calibration dataset and cut-off threshold) by using the 
ratio between the variance explained by one factor and the total 
variance.  

Species range size

1% 5% 15% 30% 60%

Grain size 22.28 9.08 18.59 40.99 27.57
Prevalence 11.96 9.1 4.84 0.14 9.27
Cut-off threshold 7.35 40.47 36.86 13.8 6.28
Grain size  �  prevalence 8.68 0.08 1.15 3.26 8.5
Grain size  �  cut-off threshold 4.69 2.9 3.15 4.75 5.48
Prevalence  �  cut-off threshold 6.82 16.61 6.58 0.12 3.37
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study area). Th e link between distribution range shape and 
area increase may explain this diff erence. Our fi ve virtual 
species were built in such a way that the spatial distributions 
of rare species were more fragmented than those of more 
common ones. Th is is not a general rule as some rare 
species can have clustered distributions and in this case 
should experience low area increase through upscaling. On 
the contrary, more common species with a fragmented dis-
tribution should experience a higher area increase. Th is 
probably explains why Hu and Jiang (2010) observed a 
sharper area increase than Seo et   al. (2009) as they modelled 
a notably fragmented species. Th e area increase of observed 
distributions might hence be amplifi ed in the case of 
real species with highly fragmented distributions. Such a 
situation is especially relevant to endangered species, since 
these often show fragmented distribution ranges due to 
habitat destruction or other human disturbances (Ewers 
and Didham 2006). Particular caution should therefore be 
taken when choosing grain size to measure distribution 
areas of species whose populations are fragmented. 

 Our results obtained from virtual species based on 
simulated niches reveal a similar exponential increase of 
range size with grain size to that reported in studies 
conducted on real species (Seo et   al. 2009, Hu and Jiang 
2010), but the coupled eff ect of range size and distribution 
shape on observed and predicted distributions through 
upscaling remains to be tested in more detail. Apart from 
the geometric eff ect infl uencing the observed area and 
hence the SDMs outputs, other parameters can aff ect 
the predicted species distribution areas, i.e. the choice of 
the sampling dataset (number of sampling sites, occurrence 
of the species), the species range size, the species prevalence 
in the calibration dataset and the cut-off  threshold. In 
our study the size of the sampling dataset remained suffi  -
cient to build relevant models whatever the grain size as lit-
tle change was observed in models outputs despite a marked 
decline of the number of sampling sites. 

 Concerning the three remaining parameters (species 
range size, species prevalence in the calibration dataset and 
cut-off  threshold), the distribution areas of species having 
a range size higher than 10% of the study area were accu-
rately predicted whatever the prevalence in the calibration 
and test set and the threshold used. Th is contrasts with 
rare species for which area prediction accuracy depended 
on both the prevalence in the calibration dataset and the 
cut-off  threshold selection. For these species, a strong area 
overprediction occurred in four out of the six presence – 
absence ratio and cut-off  combinations, thus paralleling 
the overpredicted prevalence observed by Manel et   al. 
(2001) on rare invertebrate species. Considering the preva-
lence in the calibration dataset for rare species, the initial 
prevalence preserved a better representation of the distri-
bution area, and should hence be preferred to a fi xed preva-
lence of 0.5. It should also be noted that the models 
built using a prevalence of 0.5 tended to underpredict the 
distribution area of the most abundant species (prevalence 
60%), especially for the largest grain sizes. In both cases, 
the use of a prevalence of 0.5 in the calibration dataset 
introduced a bias when the prevalence of the species in the 
observed niche notably diff ered from 0.5, such as for the 
rarest species at the smallest grain size (1% of the study area) 

using initial presence – absence ratio and prevalence as thresh-
old and the sensitivity of rare species models using initial 
presence – absence ratio and Kappa or TSS as threshold 
increased with grain size. 

 Although quality indices were slightly aff ected by 
upscaling, the geographical distribution of model omission 
errors of rare species dramatically varied through the 
upscaling process. At small grain size, models predicting 
the rare species distribution often omitted a large part of the 
geographical distribution while omission errors of models 
built at larger grain sizes were more uniformly distributed 
(Fig. 8, Supplementary material Appendix 1, Fig. A5). In 
contrast, model commission errors were mainly located at 
the edge of the observed distribution, whatever the grain size.   

 Discussion 

 Work focusing on grain size eff ects has provided mixed 
results: although Guisan et   al. (2007) showed that SDM 
performance was not greatly aff ected by a 10-fold change 
in grain size, Seo et   al. (2009) demonstrated that changing 
grain size dramatically increased the SDM-derived species 
distribution area. As reported by Seo et   al. (2009) using 
real species, in the present study we observed that the 
SDM-derived distribution areas of fi ve virtual species 
increased exponentially with grain size. Th is increase was 
primarily due to the increase of the observed distribution 
area caused by coarsening grain size, mostly at the edge of 
the distribution due to the presence of the species in cells 
adjacent to empty cells, revealing a strong eff ect of the spa-
tial range shape. Moreover, its magnitude was strongly 
infl uenced by species rarity, with the rarest species experi-
encing the largest distribution area increase through the 
upscaling process. Th is pattern diff ered from that reported 
by Seo et   al. (2009) as they observed a greater increase 
for the species of intermediate range size (10 – 20% of the 

  Figure 6    .     Eff ect of grain size on AUC (mean value over the 100 
test sets) for the fi ve virtual species. All the models were built 
using initial prevalence in the calibration and test sets. Symbols 
represent virtual species range sizes expressed as proportion 
covered relative to the study area. Circles: 1%; squares: 5%; 
diamonds: 15%; up triangles: 30%; down triangles: 60%. Grey 
scale as in Fig. 2.  
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  Figure 7.     Eff ect of grain size on model accuracy using Kappa, TSS, sensitivity and specifi city (mean value over the 100 test sets) for the 
fi ve virtual species. All the models were built using initial prevalence in the calibration and test sets. Cut-off  thresholds are the maximisation 
of the TSS (A); the maximisation of the Kappa (B) and the prevalence in the calibration dataset (C). Symbols represent virtual species 
range sizes expressed as proportion covered relative to the study area. Circles: 1%; squares: 5%; diamonds: 15%; up triangles: 30%; down 
triangles: 60%. Grey scale as in Fig. 2.  

or for the most abundant species at the largest grain size 
(90% of the study area). Indeed, resampling in order to 
obtain a prevalence of 0.5 yields a loss of information 
(Jimenez-Valverde and Lobo 2006), especially in environ-
mental conditions unsuitable for the rare species, leading 
to overprediction of the SDM-derived distribution area. We 
hence recommend designing SDMs built on presence – 
absence data to use initial prevalence in the calibration 
dataset, and either a Kappa or a TSS maximisation as cut-
off  threshold, as these two indices minimize area overpredic-
tion. Such a procedure is however sometimes diffi  cult to 
apply, as absence data are often rare or unreliable. In that 

case, the use of a large number of pseudo-absences is often 
encouraged (Wisz and Guisan 2009, Stokland et   al. 2011), 
but their infl uence on model accuracy remains controver-
sial. Indeed, Stokland et   al. (2011) argued that the number 
of pseudo-absences had little eff ect on model accuracy 
(measured using AUC) and distribution area, whereas Lobo 
and Tognelli (2011) showed that the number of pseudo-
absences signifi cantly aff ected model accuracy (measured 
using AUC, sensitivity and specifi city). Lobo and Tognelli 
(2011) did not test the eff ect of pseudo-absence number 
on the predicted area. Here we show that the ratio 
between presence and absence indeed aff ects the predicted 
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  Figure 8.     Th e predicted distribution of the rare species (1% of the study area) at each grain size. Models were built using initial prevalence 
in the calibration datasets and TSS maximisation as cut-off  threshold. Th e 100 models based on the 100 diff erent calibration datasets 
were used and we evaluated the percentage of mispredicting models in each cell. Th e darkest cells are the most often mispredicted. Note 
that the model built at the smallest grain omitted a large geographic part of the niche (the south-eastern part).  



786

distribution. From a practical point of view, the cut-off  
threshold thus has to be chosen depending on the study 
goal. If false absences in distribution predictions have to 
be restricted, TSS should be preferred. Th is is for example 
the case for invasive species studies, where the model aims 
at identifying potential invasion areas. Indeed from an eco-
system management point of view, overpredicting the inva-
sion area is better than omitting potential invasion sites 
(Mack et   al. 2000, Leprieur et   al. 2009). In contrast, 
Kappa should be preferred when searching to predict 
potential prevalence or range size. It could be of interest to 
design conservation strategies and to set-up protected 
areas for endangered species, as socioeconomic constrains 
often strongly limit the extent of the protected areas 
(Klein et   al. 2008). Hence, a reliable identifi cation of the 
favourable sites to protect using highly specifi c models 
(and Kappa cut-off  threshold) should be preferred over 
more sensitive models that will overpredict potentially 
favourable niches. 

 In accordance with Guisan et   al. (2007), here we con-
fi rmed that grain size slightly aff ects model performance 
measures, but we also demonstrated that, using initial 
prevalence in the calibration dataset and Kappa or TSS max-
imisation as cut-off  threshold, range size predictions were 
hardly aff ected once the eff ect of observed area increase 
was removed. However, grain size aff ected the geographic 
distribution of omission errors of models predicting rare 
species distribution. Indeed, at fi ne grain size, SDMs failed 
to predict presence in large geographical regions at the edge 
of the environmental niche. Such a bias occurred less fre-
quently at coarser grain size. However, the model outputs at 
the edge of the niche may be aff ected by the defi nition of the 
virtual species, as this defi nition considered a binomial 
response to environmental variables instead of a continuous 
gradient of occurrence probability. Moreover, real species 
parameters like topography or land cover can increase 
the uncertainty of projections, especially at fi ne grain size 
(Wiens and Bachelet 2009). Th e eff ect of grain size on the 
geographic distribution remains to be tested in more detail 
on real species. Our results however suggest that an optimal 
grain size probably does not exist and that it has to be selected 
depending on the data quality, the ecology of the species 
and the goals of the study. 
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