Ecology of Freshwater Fish 2005: 14: 233—-242
Printed in Singapore - All rights reserved

Copyright © Blackwell Munksgaard 2005

ECOLOGY OF
FRESHWATER FISH

Nested patterns of spatial diversity revealed for
fish assemblages in a west European river

Munksgaard, 2005

perception.

Ibarra AA, Park Y-S, Brosse S, Reyjol Y, Lim P, Lek S. Nested patterns of
spatial diversity revealed for fish assemblages in a west European river.
Ecology of Freshwater Fish 2005: 14: 233-242. © Blackwell

Abstract — The longitudinal distribution of fish assemblages across a
large west European river basin, the Garonne river (south-west France)
were investigated using a self-organising map. This nonlinear statistical
method was employed to classify sampling sites according to their
species composition. We found three main nested patterns in an
aggregated hierarchy: a replacement and succession of species along a
gradient without defined boundaries, four main zones of fish
assemblages and an upstream-downstream shift of fish communities. We
suggest that fish assemblages are too complex to be identified with a
single species as in the zonation model, and that the diversity patterns
found might be part of the same ecological process influencing fish
assemblages on different spatial scales. Thus, discrepancies in the
analysis of longitudinal patterns of fish communities in streams may
have been basically a matter of local conditions and of conceptual
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Introduction

Riverine fish communities are highly structured and
follow nonrandom patterns along a longitudinal
profile (Jackson et al. 2001). Two well-defined com-
munities located at both ends of a river (one
upstream and another downstream) were first des-
cribed for headwater streams (Schlosser 1982, 1987)
and later confirmed for larger rivers (Oberdorff et al.
1993; Lyons 1996). Upstream communities inhabit
headwaters, present low species richness and their
structure is largely defined by abiotic factors. In
contrast, downstream communities are richer in
species, dwell in more stable conditions and biotic
interactions have a more prominent role in conform-
ing their structure (Matthews 1998; Vila-Gispert et al.
2002). Between both communities there is an addi-
tion and replacement of species which has been
described as a continuum without defined boundaries
(Vannote et al. 1980). However, it has been observed
that, along this longitudinal continuum, several
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discontinuities or faunal breaks represent boundaries
or transitions between ecological patches or zones
(Matthews 1986; Naiman et al. 1988; Rahel &
Hubert 1991) corresponding presumably to different
fish communities. For example, in places where there
is an abrupt change in altitude, fish assemblages seem
to occur along a longitudinal zonation (Matthews
1998). This is the case of west European rivers for
which Huet (1959) described four zones according to
their most representative species: brown trout, Sa/mo
trutta fario L., grayling, Thymallus thymallus (L.),
barbel, Barbus barbus (L.) and bream, Abramis
brama (L.). However, the consideration of only one
species as representative of a zone may not be
sufficient to provide a relevant characterization of
fish assemblages. We therefore tested: (i) whether fish
assemblages fit Huet’s zonation on a large scale (i.e.,
the whole Garonne basin, one of the largest European
rivers) and (ii)) whether a more comprehensive
description of the fish fauna is needed to identify
characteristic assemblages.
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Materials and methods

Area of study

The Garonne basin is one of the largest basins in
Europe comprising 56,536 km? of catchment area in
the south-west of France (Fig. 1). The main channel
runs over 580 km from the Pyrenees to the Gironde
estuary in the Atlantic coast. Its main tributaries have
their sources in the Massif Central plateau and the
Pyrenees range. Due to biogeographical reasons, fish
fauna in the Garonne basin is poorer than in adjacent
basins, including the absence of grayling (Persat &
Keith 1997). Although the Garonne basin is consid-
ered as one of the least impacted by flow regulation in
Europe and one of the least polluted (Etchanchu &
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Probst 1988), it has suffered from intensive damming
during the second half of the 20th century (Steiger
et al. 1998) and the quantity of applied fertiliser has
dramatically increased in the past few years (Semhi
et al. 2000), leading to several concerns on fish
conservation, most notably on diadromous and native
species (Keith 2000).

Data

Data were obtained from the fish database of the
Aquatic Environment Team, School of Agronomy at
Toulouse (ENSAT) and from the French Fisheries
Council (CSP) obtained during collection campaigns
between 1986 and 1996, although not sampled at
regular intervals. From this database a subset for

Fig. 1. Location of the Garonne basin,
showing the sampling sites as dots.



which collection of species richness was the objective
of the sampling was chosen. Electrofishing surveys
were made either by wading in shallow areas or by
boat in the deeper reaches during low-flow periods
(i.e., late summer). In the case of wider and deeper
rivers, gill-netting was used in still waters and both
gill- and drift-netting for running waters. This combi-
nation of methods allows an effective assessment of
fish diversity in rivers (Seegert 2000), however, as
abundance measures reflect collection intensity
(Angermeier & Smogor 1995), only presence—absence
data were considered in order to remove sampling bias
as recommended by Hughes & Gammon (1987). Fish
samplings were not made on a year-to-year basis as it
implied a high financial cost. Indeed, many studies
assuming large spatial and temporal scales use species
presence—absence as the level of data resolution
because of the difficulties in obtaining reliable
estimates of relative rank abundance (Jackson et al.
2001). For the analyses, it was assumed therefore, a
large spatio-temporal scale: a 10-year span as the time
unit, and the whole Garonne basin as the spatial unit.
Thus, the time dimension had to be taken aside,
pooling all observations together in a similar way as
described by Sipponen & Muotka (1996). Moreover,
local repeated surveys on some sampling sites showed
that both environmental features and fish assemblages
did not dramatically vary along the 10-year sampling
period (Bengen et al. 1992; Mastrorillo 1997; Hut-
agalung 1998; Cattanéo et al. 1999; Reyjol 2002;
Aguilar Ibarra 2004; P. Lim, unpublished data). We
reckoned this database, nevertheless, as a reliable
representation of fish fauna in this area, according to
our field experience and with the information of fish
atlases (Bruslé & Quignard 2001; Keith & Allardi
2001). The resulting data set contained 109 sampling
sites spread over the whole Garonne basin (Fig. 1),
with 40 species belonging to 13 orders and 16
families. Cyprinidae was the better represented with
17 species, followed by Salmonidae (four) and
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Percidae (three). Data were arranged in a 109 x 40
presence—absence matrix, i.e., sampling sites in rows
and species in columns.

Statistical analysis

We applied a Kohonen self-organising map (SOM)
which is a nonlinear clustering technique capable of
displaying patterns from complex data sets (Kohonen
2001). We chose this method because it has proved
effective in characterising distribution patterns in
ecological analysis with the advantage of representing
nonlinear relationships (Lek et al. 2000). Other con-
ventional methods cannot handle outliers and species
with low frequency of occurrence (i.e., rare species)
contained in many ecological data sets (Brosse et al.
2001; Giraudel & Lek 2001). In fact, we reckon rare
species as important to accurately describe beta
diversity, playing an important role in the fish
assemblage structure (Przybylski 1993), and in the
determination of their biological integrity (Cao et al.
1998).

The SOM consisted of two layers of nodes, with the
input layer directly connected by weight vectors to a
two-dimensional output layer (Fig. 2). Modelling was
carried out using the SOM Toolbox® (Alhoniemi et al.
2000) for Matlab® (The Mathworks Inc., Natick, MA,
USA) in a PC platform, and required five steps. First,
the input layer, which may be interpreted as a
surrogate of the gamma diversity of the basin (i.e.,
regional species pool) was fed with the presence—
absence matrix. Second, the SOM calculated the
connection intensities (i.e., weights) between input
and output layers using an unsupervised competitive
learning procedure (Kohonen 2001) which iteratively
looks for clusters in the data, based on their species
composition. The connection intensity of the SOM can
be considered as the probability of occurrence of a
species at a group of sites, and can be displayed on the
SOM as shades of grey, where the darker the colour,
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Fig. 2. Simplified representation of the SOM modelling. The input matrix constitutes the input layer and contains the presence—absence data
(i.e., x;). These data are used to train the SOM by changing the connection weights until a low training error is obtained. An output matrix is
then produced with the final connection weights (i.e., p;) of each node (i.e., output unit).
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the higher the probability (e.g., black means species
occurred in >90% of samples) (Lek et al. 2000). Third,
these sites were clustered in each node according to
their similarities in species composition (i.e., pooled
alpha diversity), resulting in an output matrix, with
output nodes in rows and species in columns (Fig. 2).
The differences between nodes thus represent the beta
diversity of the basin. We chose a 12-node SOM
following the results of Park et al. (2003a) and Gevrey
et al. (2004), because it was easier to interpret and
because it presented a low training error. In fact, the
SOM was trained with different number of nodes to
find the optimum map size based on the minimum
values of both quantisation and topographic errors
which are used to assess classification quality (Park
et al. 2003b; Gevrey et al. 2004). Fourth, we looked
whether there was a significant zonation of fish

assemblages by performing (i) a cluster analysis
(Ward’s Method with Chebychev distance metric)
with the new matrix (12 X 40, nodes X species) esti-
mated by the SOM, and (ii) a Duncan’s multiple
comparison test for species richness in each assem-
blage, producing boxplots. Fifth, the clustered groups
were displayed in geographical maps to view the
spatial distribution of fish assemblages. Both the input
and the output matrices are available upon request
from the authors.

Results

Sampling sites were classified by the SOM according
to their species composition in the 12 output nodes, so
that each node included sites with similar fish fauna.
Hence, each species has a probability of occurrence in

Scientific name Common name

Table 1. List in alphabetical order of fish species
with a mean probability of occurrence >0.50 in at
—— —— least a SOM node.

v

Abramis brama (Linnaeus, 1758) Common bream
Alburnus alburnus (Linnaeus, 1758) Bleak

Alosa alosa (Linnaeus, 1758) Allis shad

Alosa fallax (Laceépede, 1803) Twaite shad
Anguilla anguilla (Linnaeus, 1758) Eel

Barbatula barbatula (Linnaeus, 1758) Stone loach
Barbus barbus (Linnaeus, 1758) Barbel

Blennius fluviatilis Asso, 1801 Freshwater blenny
Blicca bjoerkna (Linnaeus, 1758) White bream
Carassius sp. Silver carp
Chondrostoma toxostoma (Vallot, 1837) Toxostome

Cottus gobio Linnaeus, 1758 Bullhead sculpin
Cyprinus carpio Linnaeus, 1758 Common carp
Esox lucius Linnaeus, 1758 Pike

Gambusia affinis (Baird & Girard, 1853) Mosquito fish
Gasterosteus aculeatus Linnaeus, 1758
Gobio gobio (Linnaeus, 1758) Gudgeon
Gymnocephalus cernua (Linnaeus, 1758) Ruffe
Ictalurus melas (Rafinesque, 1820) Black bullhead
Lampetra planeri (Bloch, 1784) Brook lamprey

Lepomis gibbosus (Linnaeus, 1758) Pumpkinseed
Leuciscus cephalus (Linnaeus, 1758) Chub
Leuciscus leuciscus (Linnaeus, 1758) Dace
Micropterus salmoides (Lacépéde, 1802) Black bass
Mugil cephalus Linnaeus, 1758 Lisa

Oncorhynchus mykiss (Walbaum, 1792) Rainbow trout
Pachychilon pictum (Heckel & Kner, 1858) Albanian roach
Perca fluviatilis (Linnaeus, 1758) Perch

Petromyzon marinus Linnaeus, 1758 Sea lamprey
Phoxinus phoxinus (Linnaeus, 1758) Minnow
Platichthys flesus (Linnaeus, 1758) European flounder
Pseudorasbora parva (Temminck & Schlegel, 1842)  Top mouth gudgeon
Rhodeus sericeus (Pallas, 1776) Bitterling

Rutilus rutilus (Linnaeus, 1758) Roach

Salmo salar Linnaeus, 1758 Atlantic salmon
Salmo trutta fario Linnaeus, 1758 Brown trout

Salmo trutta trutta Linnaeus, 1758 Sea trout
Scardinius erythrophthalmus (Linnaeus, 1758) Rudd
Stizostedion lucioperca (Linnaeus, 1758) Pikeperch
Tinca tinca (Linnaeus, 1758) Tench

Three-spined stickelback

Roman numerals indicate the four Huet’s zones. U, upstream; D, downstream.
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each node, even when it was not found in sampling
surveys (Table 1). The assumption behind is that local
assemblages are unsaturated and might be colonised
by potential species which have the same ecophysi-
ological features as those present in local assemblages.
This similarity brought about a counter-clockwise
arrangement of nodes within the SOM showing a
longitudinal gradient, which becomes evident when
looking at the SOM and its geographical correspon-
dence. As an example, we show some of the

Diversity patterns for riverine fish

most common species in the basin, bleak, Alburnus
alburnus (L.), chub, Leuciscus cephalus (L.), minnow,
Phoxinus phoxinus (L.), brown trout, and of two ‘rare’
species — bullhead sculpin, Cotfus gobio L. and allis
shad, Alosa alosa (L.) (Fig. 3).

Nodes at the top-right of the map included sites
belonging to high mountain areas, both the top and
bottom left cells incorporated sites of the piedmont,
and finally, at the bottom-right were gathered sites
from larger and wider rivers, typical of the plains. In

Alburnus alurnus

Alosa alsa

Fig. 3. SOM and geographical maps of the species with the highest probability of occurrence, depicted in the SOM as shades of grey (i.e., the
darker the colour, the higher the probability). For example, black means species occurred in >90% of samples. Cottus gobio and Alosa alosa
were species with low-occurrence but were included for explanative purposes (see text). The longitudinal succession of species is noted

counter-clockwise from the top-right map to the bottom-right map.
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this example, C. gobio was present in sites clustered at
the top-right of the SOM, indicating that its popula-
tions dwell in oxygen-rich waters in the highlands.
Salmo trutta has a wider distribution: from mountain
streams, where it shares its habitat with C. gobio,
down to upper piedmont rivers where it is mostly
associated to P. phoxinus. In contrast, L. cephalus and
A. alburnus, are more frequent and widespread, being
distributed in warmer waters of the lower piedmont
and the plains. Finally, 4. alosa, a marine species,
remained in large rivers and estuary-influenced sites,
clustered by the SOM into node N12.

The cluster analysis applied to the output matrix
with the connection weights of each species resulted in
the dendrogram of Fig. 4. The number of groups of
clusters in a dendrogram is commonly left to the
analyst in order to look at the largest linkage distances
(Everitt & Dunn 1991). At a linkage distance of c. 0.5,
four groups become evident: one comprised the sites at
the highest altitudes (N5, N6, N9, N10), the second
included those broadly corresponding to the upper

238

Fig. 4. Dendrogram obtained with the out-
put matrix. A cut-off represented with the
dotted lines may serve just as a graphical
aid for relating the clustered groups. Hence,
we observe a two-group SOM (right) and a
four-group SOM (left) with their respective
geographical correspondence.

piedmont (N1, N2), the third the lower piedmont
(N3, N4, N7) and the fourth the plains (N8, N11,
N12). At a linkage distance of c. 1.0, these clusters
merge forming two groups, one corresponding to sites
located upstream (i.e., the top half of the SOM), and
another downstream (i.e., the bottom half of the

Species richness
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Fig. 5. Box plots showing fish species richness for the fish
assemblages found with the cluster analysis (see Fig. 4). Different
characters indicate significant difference between groups (P < 0.05,
Duncan’s multiple comparison test). Bold lines within boxes
represent the median.
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Fig. 6. Plot of mean distance to the source and mean species
richness in every output node, showing a positive and highly
significant (¥ = 0.71, P < 0.01) relationship. Vertical bars denote
standard deviations.

SOM). All assemblages were statistically different
(P <0.05, Duncan’s multiple comparison test) in
species richness composition (Fig. 5). Both distance
to the source and species richness showed a positive
relationship and a gradual increment along the river
profile (Fig. 6), consistent with the counter-clockwise
arrangement of the SOM. Combining, on the one
hand, information on the species assemblages provi-
ded by the 40 SOM maps representing probability of
occurence of the 40 species in each map cell (as
exemplified for six species in Fig. 3), and on the other
hand, results on the different clusters displayed on the
SOM map of the sites (Fig. 4), we obtained a general
view of the upstream—downstream organisation of fish
assemblages, as synthesised in Table 1.

Discussion

The spatial distribution of the sampling sites followed
an upstream—downstream pattern and fish assemblages
broadly matched the physiography of the landscape.
However, there were few exceptions or ‘atypical’ sites
in our analysis which did not correspond to the
classical longitudinal profile. For example, some rare
sites (three sites) were identified as downstream sites
by their species assemblage, but were geographically
located upstream (Fig. 4). This may be the result of
human disturbances, such as agriculture, increasing
nutrient load (Rahel & Hubert 1991; Harding et al.
1998), or urbanisation and flow regulation inducing
higher water temperatures and creating lotic—lentic
environments along a river (Ward & Stanford 1983).
Both the temporal variability of fish assemblages
(Oberdorff et al. 2001) and the location of sampling
sites in the basin (Osborne et al. 1992; Osborne &
Wiley 1992) are other sources of community change
that may explain atypical sites clustering. However,
these sites were scarce and hardly influenced our
analyses. In the same way, as the sampling occurred at
different times in different sites, time might be
covarying with space in our data set (Oberdorff et al.

Diversity patterns for riverine fish

2001; Ostrand & Wilde 2002). However, no drastic
changes in fish composition have been recorded in the
Garonne river basin, at least since the 1980s (Bengen
et al. 1992; Hutagalung 1998). Therefore, the combi-
nation of samples gathered during several years would
not bias our analysis. Nevertheless, some local
anthropic disturbances may have modified the relative
abundance of some species in some sites. Hence,
samples collected by different sampling teams and
during different seasons, can provide varied abun-
dance patterns for each species. However, the species
composition did not vary, as testified by the results
obtained in sites where repeated sampling was
performed (Bengen et al. 1992; Mastrorillo 1997;
Hutagalung 1998; Cattanéo et al. 1999; Reyjol 2002;
Aguilar Ibarra 2004; P. Lim, unpublished data). In this
way, the use of presence—absence data, although
implying a substantial loss of information compared
with abundance data, ensures a relevant consideration
of all the sampling sites, whatever their sampling date.

We can therefore interpret the dendrogram of Fig. 4
as a general conceptual framework of nested patterns
of diversity of riverine fish within a large basin.
Hence, two main assemblages were distinguished at a
linkage distance of ¢. 1.0: an upstream community and
a downstream community. This upstream—downstream
pattern has been observed elsewhere, although on
smaller scales (Schlosser 1982, 1987; Zalewski et al.
1990; Oberdorff et al. 1993; Lyons 1996; Matthews
1998; Ostrand & Wilde 2002). The upstream commu-
nity would be exposed to higher environmental
variability and would present lower species richness
than the downstream community (Schlosser 1987;
Jackson et al. 2001). Indeed, fish species richness
increased along with distance to the source (Fig. 6).
We observed in our data that upstream communities
were characterised by trout populations and trout-
associated species (e.g., minnow, stone loach),
whereas in downstream areas, these populations had
a low probability of occurrence, giving place instead
to warm water fish like cyprinids (e.g., bleak, common
bream), several piscivores (e.g., perch, pike), and
some estuarine species (e.g., shads) (Table 1). Fish
assemblages from both ends seem to be dissimilar in
species composition but assemblages located in
between might represent an ecological boundary or a
gradual transition of species (Naiman et al. 1988),
suggesting an overlapping of communities in the form
of a two-step transition zone. Indeed, as defined by
Paller (1994) a transitional zone results from an
overlapping of upstream and downstream species.
Such longitudinal transition of species fits the
upstream—midstream—downstream framework of Sch-
losser (1987) proposed for small headwater streams in
[linois. It also parallels Lyons (1989, 1996) results,
mentioning a transitional effect in Wisconsin
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where groups of species were segregated along a fish-
environment gradient, from cold-water to warm-water
streams. The four assemblages found in this study may
also be coupled to the zones of Huet (1959), as Rahel
& Hubert (1991) suggested that both the grayling and
barbel zones would represent a transition between the
trout and the bream zones. Although grayling is not a
native species in the Garonne basin, fish often
associated to it like brown trout, stone loach, gudgeon,
and minnow (Mastrorillo et al. 1998; Reyjol et al.
2001) do correspond to our assemblage II (Table 1).
This may indicate that fish assemblages are too
complex to be identified with a single species. Indeed,
as demonstrated by Marsh-Matthews & Matthews
(2000), a numerically dominant species does not
always control fish assemblage structure.

These results imply that fish zonation in large basins,
with a diversity of habitats ranging from mountains to
coastal plains, is part of a series of nested patterns of
diversity, aggregated hierarchically. We suggest, there-
fore, that gradual changes in species, fish zonation and
an upstream—downstream shift in communities might
be part of the same ecological process influencing fish
assemblages on different spatial scales (Naiman et al.
1988; Tonn 1990; Rahel & Hubert 1991; Jackson et al.
2001). In that way, the discrepancies in the analysis of
longitudinal patterns of fish communities in streams
have been basically a matter of local conditions (Balon
& Steward 1983; Matthews 1998) and of conceptual
perception. Moreover, fish assemblages are too com-
plex to be identified with a single species, as commonly
used in the Huet (1959) classification.

Finally, in this paper we have only dealt with
general long-term aspects of fish species distribution
and assemblages composition in the upstream—down-
stream longitudinal profile. This evidence of nested
patterns was probably facilitated by a simple fish fauna
in this region, and by the basin-scale approach we
used. Instructive results would be obtained by analy-
sing time-series of density and biomass estimates, and
incorporating ecological traits or guilds of species in
further analyses.

1. Investigamos la distribucion longitudinal de grupos de peces
a través una gran cuenca de Europa occidental, el Rio Garona,
al sudoeste de Francia, utilizando un mapa auto-organizativo.
Este método estadistico no linear fue utilizado para clasificar
estaciones de muestreo segiin su composicion especifica.

2. Identificamos una jerarquia conceptual de patrones a tres
niveles: una sucesion gradual de especies sin limites definidos,
cuatro zonas y un cambio de comunidades de peces entre rio
arriba y rio abajo.

3. Proponemos que los conjuntos de peces son demasiado
complejos para identificarlos con una sola especie y que los
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patrones de diversidad encontrados forman parte de un mismo
sistema ecologico que influencia a los rios a diferentes escalas
espaciales.

4. Por consiguiente, las discrepancias en el analisis de los
patrones longitudinales de peces pueden deberse basicamente a
condiciones locales y a la percepcion conceptual.
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