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Abstract. Although many studies have investigated the influence of environmental patterns on local
stream invertebrate diversity, there has been little consistency in reported relationships between diversity
and particular environmental variables. Here we test the hypothesis that local stream invertebrate
diversity is determined by a combination of factors occurring at multiple spatial scales. We developed
predictive models relating invertebrate diversity (species richness and equitability) to environmental
variables collected at various spatial scales (bedform, reach and catchment, respectively) using data from
97 sampling sites dispersed throughout the Taieri River drainage in New Zealand. Models based on an
individual scale of perception (bedform, reach or catchment) were not able to match predictions to
observations (r , 0.26, P . 0.01, between observed and predicted equitability and species richness). In
contrast, models incorporating all three scales simultaneously were highly significant (P , 0.01; r 5 0.55
and 0.64, between observed and predicted equitability and species richness, respectively). The most
influential variables for both richness and equitability were median particle size at the bedform scale,
adjacent land use at the reach scale, and relief ratio at the catchment scale. Our findings suggest that
patterns observed in local assemblages are not determined solely by local mechanisms acting within
assemblages, but also result from processes operating at larger spatial scales. The integration of different
spatial scales may be the key to increasing model predictability and our understanding of the factors that
determine local biodiversity.

Introduction

Identification of the forces that determine patterns of biodiversity constitutes a
central issue in ecology. While much is known about vertebrate diversity at global,
regional and local scales, our understanding of the influence of environmental
factors derived from different spatial scales on stream invertebrate diversity is less
well developed. Diversity patterns have been investigated at the scale of individual
basins, stream reaches, and habitat units (Minshall 1988), but the results have been
inconsistent and a variety of trends in species richness have been described in
relation to habitat variables (see Vinson and Hawkins (1998) for a review). In
general, however, the trends indicate that (i) diversity increases with an increasing
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range of conditions in the locality, (ii) species richness and equitability are reduced
when conditions deviate from ‘normal’, and (iii) environmental stability is usually
associated with higher richness and equitability. These three trends conform with
predictions made half a century ago (Thienemann 1954), and provide some support
for more recent theoretical constructs including habitat templet theory (Southwood
1977; Townsend and Hildrew 1994), the intermediate disturbance hypothesis
(Connell 1978; Townsend et al. 1997a) and the river continuum concept (Vannote et
al. 1980). While it is understood that stream components and processes can be
viewed as part of a larger interconnected system (Vannote et al. 1980; Corkum
1989), most studies of stream biodiversity have assumed, at least implicitly, that
local patterns are primarily determined by local processes (Palmer et al. 1996). On
the other hand, several river health assessment procedures based on the prediction of
macroinvertebrate taxonomic assemblages, such as RIVPACS (Moss et al. 1987;
Wright et al. 2000) and AusRivAS (Smith et al. 1999), have used environmental
descriptors measured at various spatial scales and provide interesting insights into
the prediction of taxonomic composition of the studied communities. However, little
attention has so far been paid to the relative influence of environmental variables
measured at different spatial scales on the ability to predict local diversity of aquatic
invertebrates (Vinson and Hawkins 1998). The processes that govern diversity and
habitat selection may vary across scales of analyses and, according to Wiens et al.
(1987) and Thomas and Taylor (1990), by ignoring scale we risk drawing incorrect
ecological conclusions.

Until now, the most frequently used statistical and modelling methods to identify
species– or diversity–environment relationships have been based on linear princi-
ples (see James and McCulloch (1990) for a review). However, these approaches
cannot overcome some significant biases due both to the complexity and presumed
non-linearity of invertebrate–habitat relationships and inherent correlations among
variables (Winterbourn et al. 1981; Carter et al. 1996). To deal with such difficul-
ties, transformation of non-linear variables by logarithmic, power or exponential
functions can appreciably improve the results in certain situations, but this is far
from always the case (Lek et al. 1996; Brosse et al. 1999a, 1999b). Artificial neural
networks (ANN), on the other hand, are efficient in dealing with systems ruled by
complex non-linear relationships and provide an alternative to traditional statistical

´methods (Lek et al. 1996; Lek and Guegan 2000). They have been successfully
applied to the prediction of macroinvertebrates taxa number (Walley and Fontama
1998) and to the identification of habitat factors that account for species richness at

´different spatial scales (Guegan et al. 1998; Brosse et al. 2001). In addition to the
predictive value of the models, the influence of each variable introduced in the
modelling procedure can be quantified using specific algorithms (Garson 1991; Goh
1995; Lek et al. 1996).

In this paper, we used ANN to investigate the influence of bedform, stream reach
and catchment environmental features on local insect diversity (species richness and
equitability) in tributaries of the Taieri River in New Zealand.We used ANN models
to describe local diversity in terms of environmental variables measured at a
particular spatial scale (bedform, reach or catchment) and then in terms of a
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combination of variables from the three spatial scales simultaneously. Our objective
was to test the hypothesis that local insect diversity is determined by a combination
of factors occurring at multiple spatial scales and then to determine the relative
importance of the main factors acting at each scale.

Methods

Study sites and sampling

The analysis of macroinvertebrate diversity was performed on 97 samples taken
during summer 1990 from sites dispersed throughout the Taieri River basin, which
lies between latitudes 448559 S and 468059 S in the southeastern quarter of the South
Island of New Zealand. The Taieri River is the fourth longest in New Zealand and its

2catchment area of approximately 5704 km is the fifth largest. The river flows for
318 km from the headwaters in the Lammerlaw and Lammermoor ranges at 1150 m
above sea level before reaching the Pacific Ocean 30 km south of Dunedin (Figure
1).

For each of the 97 sampling sites, consisting of 30 m sections of stream, 30
environmental variables were recorded at each of the three scales (i.e. 10 bedform,
10 reach and 10 catchment variables). Catchment variables were estimated for the

Figure 1. Map of New Zealand showing the location of the Taieri River basin and a representation of the
97 sampling sites throughout tributaries of the Taieri River.



2060

Table 1. Catchment, reach and bedform variables, codes and units.

Scale /variable Variable code Units

Catchment
Alluvial parent and surficial material Call %
(2) Schist and semi-schist Csch %

2Drainage area Cdra km
(1, 2) Maximum elevation Cmax m

a(1, 2) Relief ratio Crel –
b 2(1) Drainage density Cdrd m /m

Pasture area Cpas %
Forest area Cfor %
Native tussock area Ctus %
(2) Barren area (e.g. roads, urban areas) Cbar %

Reach
Area of pools in reach Rslo %

cStream order Rsto –
Average bankfull stream width Rwid m
(2) Average bankfull stream depth Rdep m
(1) Bedrock area outside stream Rbed %

d(2) Roughness Rrou –
(1, 2) Riparian pasture area Rpas %
Riparian forest area Rfor %
Riparian tussock area Rtus %
Riparian barren area (e.g. roads, urban areas) Rbar %

Bedform
eStream power Bstp –

f(1, 2) Median particle size Bmed mm
(2) Average bankfull stream width Bwid m
(1) Average bankfull stream depth Bdep m
Bedrock outside stream Bbed %

dRoughness Brou –
Riparian pasture area Bpas %
Riparian forest area Bfor %
(2) Riparian native tussock area Btus %
(1) Riparian barren area (e.g. roads, urban areas) Bbar %

Where terrestrial variables have the same names, equivalent measurements were derived but from the
whole drainage basin feeding the site (catchment), or from a 200 m by 100 m riparian strip upstream of
the site (reach), or within a riparian strip 5 m to each side and immediately adjacent to the site (bedform).
Where instream variables have the same names, equivalent measurements were derived but from a 200 m
section of stream upstream of the site (reach), or from the 30 m stream site itself (bedform).Variables used
to predict species richness (1) and equitability (2) in the models combining the three-scale are indicated.
a Relief, calculated as ((maximal elevation–minimal elevation) /horizontal distance along the longest

b cbasin dimension parallel to the main drainage line); total stream length per unit area; Strahler stream
d eorder; average bankfull depth /average median particle size; drainage area (as surrogate for discharge)

ftimes slope; Wolman (1954) pebble count.

complete drainage area supplying each site, using satellite image data and other
information included in a geographical information system (GIS) (Arbuckle et al.
1999). Reaches were defined as areas encompassing the stream plus surrounding
land for 100 m on either side of the stream centre line and for a 200 m distance
upstream of the study site; reach variables were estimated using site survey



2061

techniques and from the GIS. Bedform-scale data were obtained using site surveys
to define physical variables in the 30 m stream sections and land-cover in the 5 m
riparian strip immediately adjacent. The variables chosen conform with those used
in previous studies (Moss et al. 1987; Carter et al. 1996; Vinson and Hawkins 1998;
Walley and Fontama 1998; Wright et al. 2000) and accounted for geological,
morphological, altitudinal, land-cover and anthropogenic disturbance effects (Table
1). Within each scale, the 10 variables were not significantly correlated (Pearson
test, P , 0.01).

Benthic macroinvertebrates were collected as part of a large-scale, long-term
study of invertebrates within the Taieri River system (see Townsend et al. (1997a,
1997b) for more details). Two replicate Surber samples were taken from random

2locations in each site (mesh size 250 mm, surface area sampled 0.06 or 0.11 m ).
The samples were fixed in 5% formaldehyde and in the laboratory macroinverteb-
rates were sorted and identified to species level or to the lowest taxonomic level
possible on the basis of keys in Winterbourn and Greston (1989). Although two
differently sized Surber samplers were used in the study, estimates of insect density
and species richness were not influenced by the size of the Surber sampler used at a
site, as confirmed by Townsend et al. (1997b) on the same data matrix. Conceivably,
however, the larger sampler could have recovered more rare species. We checked
this possibility by comparing the mean species richness of macroinvertebrates from
small and large samples and found no significant difference (F 5 2.39, one-way1.59

ANOVA, P 5 0.17). This shows that (i) the size of the Surber sampler did not affect
abundance and richness measurements, and (ii) taxon richness was accurately
estimated even using the smaller Surber sampler.

All macroinvertebrates were sorted and counted, and data from the two replicate
Surber samples were pooled and abundance expressed as number of individuals per
square meter. A total of 85 taxa were identified and richness (total number of taxa
recorded) per site ranged between 7 and 33 (mean 5 19, sd 5 5.71). The three most
abundant taxa were Deleatidium spp. (Ephemeroptera, Leptophlebiidae),
Potamopyrgus antipodarum (Gastropoda, Hydrobiidae) and Hydora spp. (Coleop-
tera, Elmidae).

Equitability (E) was then calculated for each site as:

2E5[1 /OP ] 1 /Ss d s di

where P is the proportion of individuals in the community belonging to the ithi

taxon and S is species richness. Equitability ranged from 0.07 to 0.44 (mean 5 0.23,
sd 5 0.08).

Modelling procedure

The ANN architecture is a layered feed-forward network in which the non-linear
processing elements (neurons) are arranged in successive layers, with a one-way
flow of information from input layer to output layer, through a hidden layer (Figure
2). In ANN, the computational or processing elements are called neurons. Like a
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Figure 2. Typical three-layered feed-forward ANN with one input layer corresponding to the input
variables (i.e. environmental variables), one hidden layer with four intermediate neurons (the number of
hidden neurons was set to obtain optimal results), and one output layer with a single neuron to estimate
the output variable (i.e. species richness (SR) or equitability (E) according to the models). Solid lines
show connections between neurons: each is associated with synaptic weights that are adjusted during the
training procedure. The bias neurons (input value 1) are also shown.

natural neuron, they have many inputs but only a single output, which can stimulate
other neurons in the network.

Neurons from one layer are connected to all neurons in the adjacent layer(s), but
no lateral connections within a layer, nor feedback connections, are possible.
Connections are given a weight that modulates the intensity of the signal they
transmit. The weights play an important role in the propagation of the signal through
the network. They establish a link between the input variables and their associated
output variable and ‘contain’ the knowledge of the ANN about the problem–
solution relation. The number of input and output units depends on the representa-
tions of the input and the output objects, respectively. In the present study, we used
an ANN architecture with 10 input neurons to code the 10 different input variables
(except for the three-scale species richness model, where only eight input variables
were used and the network comprised eight input neurons). Four neurons in the
hidden layer yielded the best compromise between computing time and lowest error
in both training and testing. The output neuron computed the value of the output
variable (species richness or equitability). As a complement, a ‘bias’ neuron was
added to each computational layer (i.e. hidden and output layer); these two neurons
(Figure 2) had a constant input value of one and were used to lower biases in the
modelling procedure (Rumelhart et al. 1986). Training the network consists of using
a training data set to adjust the connection weights to minimize the error between
observed and predicted values. This training was performed according to an iterative
process called the back-propagation algorithm (Rumelhart et al. 1986). The compu-

tational program was written in a Matlab environment and computed with an Intel
Pentium processor. Model performance was determined using the correlation

coefficient (r) between observed and estimated values of the output variable.
However, because the r-value is likely to be biased by high values of the output
variable, we used mean squared errors (MSE) between observed and estimated
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values as a second estimator of model quality (Brosse et al. 1999b). The number of
iterations needed to set up an optimal model was determined using a bootstrap
cross-validation method where three quarters (73 observations) of the data matrix
was used as a training set and the remaining quarter (24 observations) as a testing
set. In the training and testing procedure, as recommended by Lek et al. (1996), we
used the MSE between observed and predicted values (in relation to the number of
iterations) to determine the optimal training zone. This zone corresponds to the best
compromise between bias and variance (i.e. the number of iterations yielding the
lowest MSE in both training and testing; Geman et al. 1992; Lek et al. 1996). MSE
in both training and testing is expected to decrease with an increasing number of
iterations. However, a phenomenon called ‘overtraining’ may occur when too many
iterations are used. When the model is overtrained, the MSE of the testing set
increases due to a reduced generalization ability of the model. Training should
therefore be stopped when the number of iterations corresponds to the optimal
training zone, before overtraining occurs. This procedure is illustrated in Figure 3
for the model predicting richness using bedform variables. Optimal training of all
the ANN models used in this study was achieved after a training procedure of 1000
iterations, which was therefore considered to provide the optimal model configura-
tion.

Once model architecture and number of iterations needed to obtain an optimal
training had been determined, the modelling was carried out in two steps. First,
model training was performed using the whole data matrix. This step was used to

Figure 3. Identification of the optimal training zone of an ANN model predicting macroinvertebrate
richness using 10 environmental variables measured at the bedform scale. MSE between observed and
predicted richness values during training (black circles) and testing (open circles) are represented in
relation to number of iterations. This procedure was repeated four times using a bootstrap procedure. The
optimal training zone (grey zone) is defined as the number of iterations producing the lowest MSE in both
training and testing procedures.
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estimate the performance of the ANN in learning data. Second, we used the
‘leave-one-out’ bootstrap cross-validation test (Efron 1983), where each sample is
left out of the model formulation in turn and predicted once, to validate the models.
This procedure is appropriate to our data, as it should be used when the amount of
data is limited and/or when each sample is likely to have ‘unique information’
(Efron 1983; Kohavi 1995); moreover, it has previously been found to be efficient

´for ANN modelling of small data sets (Guegan et al. 1998; Brosse et al. 1999b). This
second step allows the prediction capabilities of the network to be assessed.

In addition to the prediction, the impact of the explanatory variables in an ANN
analysis was determined using specific algorithms: the relative contribution of each
variable in the models was obtained by a weights partitioning method (Garson 1991;
Goh 1995); and the sensitivity of the variables, i.e. the influence of the range of
variation of each predictor on invertebrate diversity, was assessed by a simulation
method established by Lek et al. (1996). These two explanatory procedures had
previously been proved efficient in various applications of ANN in ecology (Lek et

´al. 1996; Guegan et al. 1998; Brosse et al. 1999a, 1999b, 2001).
We applied this procedure to obtain predictive models of invertebrate species

richness and equitability for each spatial scale (i.e. bedform, reach and catchment),
giving rise to six models (three for species richness and three for equitability). The
contribution of a variable was assumed to be important if it was greater than the
mean value of a theoretical homogeneous distribution of all the variables (see Kim et
al. (2000) and Brosse et al. (2001) for more details). These significant variables
were used to set up a new data matrix for analysis of the three scales simultaneously.
We checked for collinearity and when a significant correlation (P , 0.01) was found
between two variables, the one accounting for less variation in the single-scale
models was removed. Then, we produced new ANN models for richness and
equitability, each model accounting for the three environmental scales simultan-
eously. To check the relative effectiveness of ANN to predict invertebrate species
richness and equitability, we compared the ANN model results with those obtained
from the same data matrix using (i) a simple multiple linear regression (MLR)
analysis (James and McCulloch 1990) without transformation of the variables, and
(ii) a non-linear regression analysis, based on a generalized additive model (GAM)
(Hastie and Tibshirani 1990). The latter model is a non-parametric regression
method that models the output variable as an additive sum of unspecified functions
of covariates. Aiming to optimize the prediction efficiency of the GAM models, the
input variables were non-linearly transformed using the ‘lowess’ method (Trexler

and Travis 1993). MLR and GAM models were set up using S-plus software (see
Brosse et al. (1999a) for more details).

Results

When each spatial scale was considered individually, all ANN model results for
both species richness and equitability were highly significant after the training
procedure (P , 0.01). However, r increased and MSE decreased from the largest to
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Table 2. Correlation coefficient (r) and MSE between observed and estimated values of species richness
and equitability in ANN training and testing for the bedform, reach and catchment single-scale models
and the combined three-scale models.

Scale Species richness Equitability

Training Testing Training Testing

r MSE r MSE r MSE r MSE

Bedform 0.889** 6.786 0.253* 39.706 0.846** 0.0019 0.19 (ns) 0.0089
Reach 0.597** 20.797 0.103 (ns) 40.857 0.743** 0.0032 0.106 (ns) 0.0097
Catchment 0.555** 22.386 0.068 (ns) 45.887 0.613** 0.0044 0.026 (ns) 0.0094
Three scales 0.903** 6.010 0.642** 19.560 0.861** 0.0019 0.553** 0.0049

(ns) not significant, P . 0.05; * marginally significant, 0.05 . P . 0.01; ** highly significant, P , 0.01.

the smallest spatial scale (Table 2). In the testing procedure, only one model was
marginally significant (species richness predicted using bedform-scale variables; r
5 0.253, P 5 0.012). Consequently, MSE was high (six times higher in testing than
in training) and residuals were not independent of the estimated values (r 520.486,
P , 0.01), indicating poor predictive ability. The five remaining models were not
significant (r , 0.20, P . 0.05) and had high MSE values. In other words, these
single-scale models were able to recognize the ecological features in the training
data matrix, but failed to generalize this information to new data during testing.
Therefore, the information extracted from the training procedure of each model
using Garson’s algorithm was only applied to the training procedure. In each of the
six models (Table 3), no variable accounted for more than 25% of the contribution,
indicating that both species richness and equitability were governed by a combina-
tion of several variables. For each model, three or four variables each contributed
more than 10% (i.e. the significance threshold previously defined), together repre-
senting more than 45% of the total information explaining species richness or
equitability.

Taking the three single-scale models together, 12 and 11 variables were important
in accounting for equitability and species richness, respectively (accounting for
more than 10%; Table 3), and these were considered for the three-scale analyses.
Highly correlated variables (i.e. P , 0.01) were removed from the three-scale data
matrix to avoid statistical biases. (i) For species richness, the percentage of pasture
measured at the catchment scale (Cpas), average bankfull depth (Rdep) and
percentage of tussock measured at the reach scale (Rtus) were respectively corre-
lated with percentage of pasture measured at the reach scale (Rpas) (r (Rpas, Cpas)
5 0.778, P , 0.01), depth measured at the bedform scale (Bdep) (r (Bdep, Rdep) 5
0.490, P , 0.01), and maximal elevation (Cmax) and drainage density at the
catchment scale (Cdrd) (r (Cmax, Rtus) 5 0.477, P , 0.01 and r (Cdrd, Rtus) 5
0.430, P , 0.01). Rdep, Rtus and Cpas contributed less than Bdep, Cdrd and Rpas
in the single-scale models and were removed from the three-scale data matrix. The
remaining matrix contained three catchment-scale, two reach-scale and three
bedform-scale variables: Cmax, Crel, Cdrd, Rbed, Rpas, Bmed, Bdep, and Bbar (see
Table 1). (ii) For equitability, in addition to the correlation between Bdep and Rdep
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Table 3. Percentage contribution, obtained by Garson’s algorithm, of each of the 10 input variables
accounting for the catchment, reach and bedform spatial scales, respectively, to the prediction of insect
diversity in single-scale models: species richness and equitability.

Input variables Contribution (%)

Richness Equitability

Catchment
Alluvial parent and surficial material 6.64 7.21
Schist and semi-schist 7.39 11.59
Drainage area 9.79 8.09
Maximum elevation 12.48 13.70
Relief ratio 12.44 11.91
Drainage density 14.49 9.09
Pasture area 11.77 7.42
Forest area 7.3 6.87
Native tussock area 8.27 7.73
Barren area 9.44 16.39

Reach
Area of pools in reach 8.00 7.85
Stream order 9.57 6.48
Average bankfull stream width 6.81 12.04
Average bankfull stream depth 12.17 19.28
Bedrock area outside stream 13.39 7.54
Roughness 7.54 10.20
Riparian pasture area 12.81 11.84
Riparian forest area 9.29 7.51
Riparian tussock area 11.98 8.81
Riparian barren area 8.45 8.46

Bedform
Stream power 7.85 9.20
Median particle size 23.56 13.39
Average bankfull stream width 9.52 13.50
Average bankfull stream depth 12.80 10.86
Bedrock outside stream 8.75 7.82
Roughness 6.40 7.12
Riparian pasture area 6.33 9.59
Riparian forest area 5.72 9.20
Riparian native tussock area 8.34 11.45
Riparian barren area 10.73 7.87

Significant contributions are in bold (see text for details).

(r (Bdep, Rdep) 5 0.490, P , 0.01), a highly significant correlation was found
between average bankfull channel width measured at the bedform and reach scales
(Bwid and Rwid), (r (Bwid, Rwid) 5 0.864, P , 0.01). Bdep and Rwid contributed
less than Rdep and Bwid and were removed. The remaining matrix contained four
catchment-scale, three reach-scale and three bedform-scale variables: Cmax, Crel,
Csch, Cbar, Rdep, Rrou, Rpas, Bmed, Bwid, and Btus (see Table 1).

Inclusion of these variables in three-scale analyses increased the reliability of
both training and testing procedures (Table 2). In the training procedure, predictions
of species richness and equitability were associated with correlation coefficients
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Table 4. Correlation coefficient (r) and MSE between observed and estimated values of species richness
and equitability in training and testing procedures using MLR and GAM for three-scale models.

Species richness Equitability

Training Testing Training Testing

r MSE r MSE r MSE r MSE

MLR 0.403** 27.074 0.196 (ns) 37.725 0.427** 0.0055 0.201* 0.0081
GAM 0.807** 11.318 0.422** 33.790 0.778** 0.0027 0.313** 0.0072

(ns) not significant, P . 0.05; * marginally significant, 0.05 . P . 0.01; ** highly significant, P , 0.01.

greater than 0.85 (P , 0.01), with low MSEs, and the residuals were independent of
estimated values (r 5 0.03, P 5 0.74 for equitability and r 5 20.05, P 5 0.60 for
species richness). All results were superior to those obtained for single-scale
analyses. Even using only eight variables (i.e. less information given to the model),
the result of the three-scale species richness model was better than any single-scale
model with 10 variables. Results were poorer for the testing procedure, but remained
highly significant (P , 0.01) with correlation coefficients greater than 0.5 for both
diversity descriptors. In each case, MSE remained acceptably low, with error values
about half of those obtained in single-scale models (Table 2), and the assumption of
independence of residuals was verified (r 5 20.16, P 5 0.12 for species richness
and r 5 20.17, P 5 0.11 for equitability).

To check the effectiveness of ANN in modelling diversity patterns, we compared
the results with more classical modelling methods (Table 4). MLR produced
significant results in the training procedure and residuals were independent of
estimated values (r 5 0.006, P 5 0.95 for equitability and r 520.001, P 5 0.99 for
species richness), but r-values were less than 0.5 and MSEs were high. GAM results
were much better than those of MLR, with r-values about 0.8 and residuals
independent of estimated values (r 5 0.103, P 5 0.315 for equitability and r 5

0.078, P 5 0.449 for species richness). However, the ANN models performed
consistently better, with the highest r-values and MSE values about half those
derived from GAM.

In the testing procedure, the performance of MLR models remained poor, with a
non-significant species richness model (r 5 0.196 between observed and estimated
species richness, P 5 0.055), high MSE and a significant correlation between
residuals and estimated values (r 5 20.283, P , 0.01). Results were a little better
for equitability, with a marginally significant model (r 5 0.201 between observed
and estimated species richness, P 5 0.048), but the residuals were not independent
of the estimated values (r 5 20.313, P , 0.01). GAM provided better test results,
with significant models for both species richness and equitability (P , 0.01).
However, correlations between observed and estimated values for GAM models
were less than, and MSEs greater than, those for ANN models. Moreover, the GAM
models were invalid due to significant correlations between residuals and estimated
values (r 520.494, P , 0.01 for equitability and r 520.536, P , 0.01 for species
richness). Within the three methods, ANN models provided the best results and this
was the only modelling procedure able to validate the models on new observations,
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Table 5. Percentage contribution in the three-scale models (obtained using Garson’s algorithm) of each
input variable to the prediction of insect diversity: species richness (8 input variables) and equitability (10
input variables).

Input variables Scale Contribution (%)

Richness
Maximum elevation Catchment 8.73
Relief ratio Catchment 14.07
Drainage density Catchment 9.20
Bedrock area outside stream Reach 9.46
Riparian pasture area Reach 16.53
Median particle size Bedform 24.12
Average bankfull stream depth Bedform 9.72
Riparian barren area Bedform 8.17

Equitability
Maximum elevation Catchment 7.35
Relief ratio Catchment 13.53
Schist and semi-schist Catchment 9.71
Barren area Catchment 8.09
Average bankfull stream depth Reach 10.52
Roughness Reach 7.50
Riparian pasture area Reach 12.79
Median particle size Bedform 12.65
Average bankfull stream width Bedform 7.27
Riparian native tussock area Bedform 10.59

Significant contributions are in bold (see text for details).

whereas MLR and GAM provided non-significant or biased predictions (non-
independence of residuals and estimated values).

Considering the relative contributions of each variable in the ANN, the model for
species richness had strong contributions by variables from each of the three spatial
scales. Median particle size at the bedform scale (Bmed), percentage of pasture at
the reach scale (Rpas) and relief ratio at the catchment scale (Crel) made contribu-
tions of about 24, 16 and 14% (Table 5), accounting together for over 50% of the
model response. The five remaining variables contributed less than 10% each. The
contribution profile was more complex for equitability (Table 5), but the same three
variables (Bmed, Rpas and Crel) each accounted for about 13%. Three further
variables each accounted for about 10%, namely the percentage of schist / semi-
schist in the catchment (Csch), average bankfull depth along the reach (Rdep) and
the percentage of tussock adjacent to the bedform (Btus).

Applying Lek’s algorithm, the influence of the three environmental variables that
accounted for most variation in species richness and equitability in the ANN models
is illustrated by three curves for each diversity descriptor (Figure 4). Only one
variable shows a linear response (Crel for the species richness model) and three
other patterns can be identified: (i) right skewed: Crel for equitability and Bmed for
species richness; (ii) U shaped: Rpas for species richness and Bmed for equitability;
and (iii) sigmoid decrease: Rpas for equitability.
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Figure 4. Contribution profiles (sensitivity analyses) for each of the three most strongly contributing input
variables (i.e. relief ratio of the catchment; percentage of riparian pasture area measured at the reach
scale; and medium particle size at the bedform scale), in the three-scale ANN models, for the prediction
of stream insect species richness and equitability. The values cover the whole range of variation of each
of the input variables tested.

Discussion

It appears that the processes that determine ecological patterns can be approximated
by linear functions only to a limited extent, even after attempting to transform
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variables to linearize their distributions (James and McCulloch 1990; Lek et al.
1996; Scardi 1996; Brosse et al. 1999a, 1999b). The enhancement of model quality
between linear (i.e. MLR) and non-linear (i.e. GAM) regression analyses testifies to
the non-linearity of relationships between the input and output variables in our data
matrix. Although complex transformation of the variables using a non-parametric
modelling method (i.e. GAM) clearly improved the model, predictive ability was
less than that of models developed using the ANN approach. The improvement in
quality of model predictions between MLR, GAM and ANN serves to emphasize
the complex non-linear nature of relationships between environmental variables and
invertebrate diversity in tributaries of the Taieri River. Moreover, these results
provide justification for the use of ANN, which is known to be able to deal with such
non-linear relationships and can successfully model non-linear ecological systems
without complex transformations of the data (Lek et al. 1996; Scardi 1996; Lek and

´Guegan 2000).

Single-scale models

Many studies of stream benthic invertebrates have assumed, at least implicitly, that
local patterns are determined primarily by local processes (Palmer et al. 1996;
Vinson and Hawkins 1998). While river quality assessment procedures usually
incorporate different spatial scales, they do not identify the relative influence of the
different scales (Moss et al. 1987; Smith et al. 1999; Wright et al. 2000). Results
from our single-scale analyses seem, at first sight, to be consistent with the
assumption of a predominant effect of local variables, since bedform-scale variables
produced models with the highest reliability during the model training phase.

However, results from the more important testing procedure do not support the
assumption of local control of diversity. Thus, while models produced using
bedform-scale variables were still marginally better than those using reach- or
catchment-scale variables in terms of higher r-values and lower MSEs, all the
single-scale models showed very poor predictive ability of new sites and yielded
strong correlations between residuals and estimated values in the testing procedure.
Put another way, the single-scale models were able to extract relationships between
input and output variables for each sample (training procedure), but this information
was never sufficient to generalize the predictions to new samples (testing pro-
cedure). We can therefore hypothesize, in accordance with Corkum (1989) and
Carter et al. (1996), that multiple-scale processes act in the determination of stream
insect diversity, and that each variable may act predominantly at a single scale of
measurement.

The results of our ANN analyses help to explain the apparent discrepancies in
studies that have identified a wide variety of local factors as explaining local
diversity (Quinn and Hickey 1990; Wohl et al. 1995). In their review, Vinson and
Hawkins (1998) noted that variables measured at a single habitat scale may have
been sufficient to explain local diversity, but were not readily generalizable to other
streams or even to sampling sites in the same stream. This could signify, on the one
hand, that diversity in different streams is governed by different variables, support-
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ing the hypothesis of unstructured or stochastic stream assemblages (Winterbourn et
al. 1981). On the other hand, these results may simply reflect a lack of information
(unmeasured variables). In other words, the information available from any single
spatial scale may be insufficient to entirely explain local diversity patterns, as
suggested by Corkum (1989) and Carter et al. (1996). A comparison of our
single-scale and three-scale models, discussed next, is relevant in this context.

Three-scale models

When the three spatial scales were considered simultaneously (after removal of
correlated variables) model reliability increased, with significant (i.e. r . 0.5, P ,

0.01) and valid (residuals independent of estimated values, P , 0.01) models for
training and, more importantly, testing procedures. The models were able to identify
diversity features on the basis of the input variables in the training procedure, but
also to reliably predict diversity for new samples. Thus, local stream benthic
diversity was only successfully predicted when variables from several scales were
modelled together. This result corroborates the use of a large range of variables
measured at various spatial scales in most river health assessment procedures based
on invertebrates assemblages, such as RIVPACS or AUSRIVAS (Moss et al. 1987;
Smith et al. 1999; Wright et al. 2000). However, as shown by the decrease of model
predictive efficiency between training and testing, the predictive ability of ANN
models is limited by the information contained in the training data set (Lek et al.
1996). In our case, the limited number of samples did not allow the ANN to deal
effectively with the full range of factors influencing diversity and some impaired
prediction can also be due to unmeasured environmental variables of importance.
For example, the high instability of some streambeds is known to influence
macroinvertebrate diversity (Death and Winterbourn 1995; Townsend et al. 1997a;
Matthaei et al. 1999), but this variable could not be taken into account here because
information on streambed stability was only available for a limited number of the
Taieri sites.

Sensitivity analyses

Results of the Garson analysis emphasize the influence of three variables in the
determination of insect species richness and equitability. These variables are derived
from bedform (median particle size), reach (% pasture) and catchment scales (relief
ratio), respectively, testifying to the simultaneous influence of variables at different
scales on stream insect diversity. The differential patterns of species richness and
equitability in relation to these influential environmental variables can be used as a
basis for hypotheses about the generation of diversity.

Relief ratio (maximum elevation – minimum elevation /basin length) is high for
catchments with large slopes overall, but these usually have an assortment of water
falls and other high gradient stretches together with lower gradient sections.
Catchments with low relief ratios tend to be more uniform, with low gradient
stretches predominating. Thus, relief ratio can be considered to be an index of
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stream heterogeneity at the catchment scale, and therefore, according to general
niche theory, drainages with higher relief ratios are expected to possess higher insect
richness in the catchment as a whole because of a greater range of conditions and
resources and therefore of potential niches. Our results suggest that local richness
also increases with relief ratio in the catchment (Figure 4), because a larger number
of species are available to colonize stretches throughout the catchment, particularly
by drifting (Waters 1972; Townsend and Hildrew 1976). On the other hand, many of
the species recorded in a site may have drifted there but be poorly fitted to local
environmental conditions and therefore be present at low densities. This justifies
higher species richness but lower equitability at higher relief ratios (Figure 4).

The influence of land use on diversity acts through two main processes: changes
to light intensity and inputs of particulate or dissolved organic matter (Sweeny
1993; Scarsbrook and Halliday 1999; Townsend and Riley 1999). The percentage of
pasture in riparian zones along the stream reach is an index of the principal
anthropogenic influence in the Taieri River. Highest species richness and equitabili-
ty occurred in sites with least pastoral development (Figure 4). Evidently, pastoral
development is influential, but it is the prevalence of pasture in the riparian zone at
the reach scale (or in the whole catchment, as Rpas and Cpas were highly correlated,
r 5 0.778, P , 0.01), rather than immediately adjacent to the site (i.e. Bpas), that
matters most. Therefore, the influence of land use cannot be related to light
intensity, which depends on shading by vegetation located immediately on the
banks; the effect of land use is therefore related to the amount of particulate and
dissolved matter introduced from the reach or catchment as a whole. Thus, reaches
associated with a higher percentage of pasture can be considered disturbed by
human activities and their lower richness and equitability, compared to more
pristine sites, result from a lack of dependable sources of organic matter for
shredders such as Austroperla cyrene (Newman) and filterers such as Austrosimulim
australense (Schiner), species that are characteristic of native tussock grassland and
native forest reaches (Winterbourn and Greston 1989). The increase in richness at
the highest levels of pasture development may be related to high algal productivity
where nutrient inputs (particularly phosphorus) are high (Krug 1993; Townsend and
Riley 1999), providing rich resources for grazers and collector-gatherers (Vannote et
al. 1980). Nevertheless, in these pastoral areas, equitability remains low due to the
high abundance of tolerant and generalist species, such as the mayfly Deleatidium
spp., known for its opportunistic habitat use (Winterbourn and Greston 1989).

Finally, sites with bedforms made up of very small or very large particles are
associated with low species richness but high equitability. These sites have low bed
heterogeneity and, according to general niche theory, are likely to sustain low
species richness. Individuals are more evenly distributed among taxa (high
equitability) in the finest and coarsest substrates (Figure 4). Intermediate median
particle sizes are associated with a high degree of heterogeneity of substrate types
and streambed habitats (C.R. Townsend, unpublished data), factors that can be
expected to be associated with higher faunal diversity (Williams 1980; Townsend et
al. 1997a; Vinson and Hawkins 1998). In the case of equitability, it may be that
some rare habitat types are added where more substrate heterogeneity is available,
leading to lower equitability.
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The three most important variables in the prediction of both species richness and
equitability were derived from different spatial scales, and were highly non-linearly
related to the two diversity descriptors. The influence on diversity of a particular
variable, but measured at different scales, may depend on quite distinct processes
(e.g. pasture in this study). Thus, a given variable affects richness or equitability at
one scale but not another. This could help explain the difficulty of many previous
studies in identifying the environmental factors that determine benthic invertebrate
diversity. Patterns observed in local assemblages are not only determined by local
processes acting within assemblages, but also result from processes operating at
larger spatial scales. Integration of different spatial scales, identification for each
environmental feature of the scale that is relevant for the studied organism or
process, and recognition that relationships are not likely to be linear, may be the key
components for increasing model predictability and understanding of factors that
determine local diversity.
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