
1033

Transactions of the American Fisheries Society 131:1033–1043, 2002
q Copyright by the American Fisheries Society 2002

Relationships between Environmental Characteristics and the
Density of Age-0 Eurasian Perch Perca fluviatilis in the Littoral

Zone of a Lake: A Nonlinear Approach

SEBASTIEN BROSSE* AND SOVAN LEK

UMR 5576 Center for the Ecology of Aquatic Ecosystems, Université Paul Sabatier,
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Abstract.—We studied the spatial distribution of age-0 Eurasian perch Perca fluviatilis in the
littoral area of a large lake (Lake Pareloup, France) using eight environmental variables as habitat
descriptors. Nonparametric locally weighted scatterplot smother (Lowess) functions were used to
visualize the relationships between spatial distribution and the habitat descriptors. The highest
abundance was observed in the transition area between shallow water with dense vegetation cover
and unvegetated open water. Habitat use depended on a combination of environmental variables,
such as depth, distance from the bank, vegetation cover, and slope of the bank, with abundance
exhibiting nonlinear responses to each variable. We hypothesized that these complex responses
resulted from a trade-off between searching for food and avoiding predators. We then attempted
to build a predictive model of age-0 perch abundance based on the environmental descriptors using
an artificial neural network (ANN). The predictive quality of the model was high (r2 5 0.78
between the observed and estimated perch densities) compared with that of the more classical
linear modeling technique (i.e., multiple linear regression; r2 5 0.20) and another nonlinear mod-
eling technique (a generalized additive model; r2 5 0.33). Finally, ANN sensitivity analyses of
the environmental variables in the models confirmed the results obtained with the Lowess approach,
which considered the influence of each variable on perch habitat use. In light of these results,
ANN and Lowess methods have considerable potential in the prediction and explanation of eco-
logical relationships.

There has been increasing interest in the study
of habitat as it relates to the spatial distribution of
fish populations (Beecher et al. 1993; Rossier
1995; Fischer and Eckmann 1997). Within lake
ecosystems, the littoral zone is important to fish,
with abundance there often being greater than in
other areas (Fischer and Eckmann 1997; Brosse et
al. 1999a). Age-0 fish use the littoral zone during
summer because it provides food and shelter (Sav-
ino and Stein 1989; Persson and Eklöv 1995).
However, most European studies of age-0 fish hab-
itat use deal with cyprinids (e.g., Grossman et al.
1987; Copp 1992; Mastrorillo et al. 1996). The
habitat use of Eurasian perch Perca fluviatilis has
rarely been investigated even though this species
is one of the most common in European lowland
rivers and lakes (Persson and Eklöv 1995; Ma-
chacek and Matena 1997). Moreover, most studies
of fish habitat use in lakes have been conducted
at a large spatial scale (Rossier 1995; Fischer and
Eckmann 1997; Brosse et al. 1999a), whereas
small-scale habitat studies have been limited to
streams and rivers (Copp 1992; Beecher et al.
1993; Baran et al. 1996; Mastrorillo et al. 1996).
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Our lack of knowledge in this area is probably
due to the complexity of habitat responses, which
are governed by complex, often nonlinear inter-
actions among various environmental variables
(Brosse et al. 1999b). To deal with such complex-
ity, the transformation of nonlinear variables by
logarithmic, power, or exponential functions is of-
ten used, but the transformed variables sometimes
fail to fit experimental data (Lek et al. 1996). On
the other hand, to minimize the complexity of the
natural system, environmental variables are usu-
ally grouped into classes or fish abundances are
transformed into presence/absence data (e.g.,
Copp 1992; Beecher et al. 1993). However, these
transformations are not always representative of
biological reality and can cause biases in the anal-
yses. Several alternatives to using linear methods
and presence/absence data are available, such as
nonparametric smoothing methods (i.e., the locally
weighted scatterplot smoother [Lowess] method;
Cleveland 1979). Such smoothing methods can ac-
curately fit nonlinear data (Hastie and Tibshirani
1990; Trexler and Travis 1993; Brosse et al. 1999c)
and thus are able to portray nonlinear relationships
between two variables. From a predictive point of
view, artificial neural networks (ANNs) perform
the same task as regression analysis and are par-
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ticularly suited to nonlinear data (Rumelhart et al.
1986; Lek and Guégan 1999). We have previously
used these modeling tools to predict fish species
richness (Guégan et al. 1998) and the density and
biomass of fish populations in various streams
(Baran et al. 1996; Mastrorillo et al. 1997) and
lakes (Brosse et al. 1999b, 1999c).

In this paper we first describe the relationships
between age-0 Eurasian perch density and habitat
using the Lowess method (Cleveland 1979). Then,
a predictive model of density is formulated using
an ANN. The predictive performance of the ANN
is evaluated by comparing it with that of classical
modeling techniques (i.e., multiple linear regres-
sion [MLR] and generalized additive models
[GAMs]), and the reliability of the model’s rep-
resentation of ecological reality is compared with
that of Lowess curves.

Methods

Study site and sampling.—The study was un-
dertaken during summer 1997 in Lake Pareloup.
Located in southwestern France, this reservoir has
an area of 1,250 ha and a volume of approximately
168 3 106 m3. The maximum depth is 37 m and
the average depth 12.5 m. Lake Pareloup is a
warm, monomictic lake that stratifies thermally at
10 m from early June to mid-September and de-
velops low oxygen content in the hypolimnion.
This prevents fish from colonizing deep water in
summer. The reservoir is subject to large water
level fluctuations (3–10 m) between summer and
winter due to pumping by a power station. There-
fore, the aquatic vegetation is limited to terrestrial
vegetation located in the littoral areas that are
flooded during the summer high-water period
(April–October).

Sampling of age-0 Eurasian perch was done
once per week in the littoral zone of the lake from
the end of the fish’s pelagic period (late June) to
the end of summer (August), when the fish mi-
grated to deeper areas. Samples were collected be-
tween 0900 and 1800 hours in order to avoid biases
due to different fish occupation patterns during the
day and at night (Hasler and Villemonte 1953; Im-
brock et al. 1996). Point sampling abundance by
electrofishing (Nelva et al. 1979) modified for
young fish was employed to evaluate age-0 perch
habitat use. Electrofishing was performed using a
backpack electrofishing unit with a 10-cm ring an-
ode. Such equipment can be used in a large range
of situations and is efficient for the entire range
of age-0 fish sizes (Copp 1989). For each sampling
point, the anode was swiftly immersed into the

water (generally about 50 cm but less at shallower
points), and stunned fish were collected with a fine-
mesh (1-mm) dip net. Each week, 30–40 sampling
points (separated 5–10 m from each other to avoid
biases due to fish escapement from one sample to
the next) were haphazardly selected and investi-
gated in the same area of the lake.

For each of the 306 resulting sampling points,
nine habitat variables were measured: distance
from the bank (m); depth (m); the local slope of
the bottom (measured according to a scale ranging
from 0 [none] to 3 [sheer]); the percentage of
flooded-vegetation cover, which was visually es-
timated as the percentage of bottom area covered;
and the percentages of bottom area composed of
boulders, pebbles, gravel, sand, and mud, which
were determined by means of the Cailleux (1954)
methodology. Variables were measured in a 1-m2

bottom area corresponding to each sample. The
Pearson correlation matrix, which was derived
from simple linear regressions, was used to test
for collinearity and showed a strong negative cor-
relation between the percentages of sand and mud
(r2 520.97, P , 0.01). As a result, the sand var-
iable was removed from the data matrix. The cor-
relations among the remaining eight variables were
not significant (P . 0.01) for 21 of the 28 com-
binations. For the other 7 combinations, the co-
efficients of determination (r2) were all less than
0.30 (Table 1), indicating low collinearity.

In addition to gathering data on the environ-
mental variables, we collected age-0 Eurasian
perch (when present) in each sample. These were
preserved in a 4% solution of formaldehyde and
later identified and counted in the laboratory. Prior
to statistical analyses, density data were log10(x 1
1) transformed. Because age-0 fish generally ag-
gregate in dense shoals, which leads to a large
range of densities in similar habitats, statistical
methods are typically unable to reliably fit these
data. Previous researchers have attempted to solve
this problem in two ways. The first was to aggre-
gate the samples. However, the larger spatial scale
inherent in that approach tends to obscure the as-
sociation between environmental patterns and fish
density. The second was to transform the data into
presence/absence form, an approach that leads to
the loss of a large amount of information. By con-
trast, logarithmic transformation reduces data het-
erogeneity, avoiding the undue influence of out-
liers (ter Braak and Looman 1995) while incor-
porating truly quantitative information. Moreover,
logarithmic transformation of the dependent var-
iable has been commonly and efficiently applied
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TABLE 1.—Bivariate correlation matrix (r2 values) between the original nine environmental variables. Asterisks in-
dicate significant correlations (P , 0.01). Values associated with the variable San are given in bold (this variable was
not used in analyses; see text for details). Abbreviations are as follows: Dep 5 depth, Dis 5 distance from the bank,
Slo 5 slope, Bou 5 percent boulders, Peb 5 percent pebbles, Gra 5 percent gravel, San 5 percent sand, Mud 5
percent mud, Veg 5 percent flooded vegetation.

Vari-
able

Variable

Dep Dis Slo Bou Peb Gra San Mud

Dis
Slo
Bou
Peb
Gra
San
Mud
Veg

0.02
0.02
0.00
0.00
0.00
0.00
0.00

20.02

0.18*
0.00
0.00
0.00

20.12*
0.14*

20.28*

0.00
0.01
0.01

20.18*
0.17*

20.25*

0.00
0.00
0.00
0.00
0.00

0.09*
20.01

0.00
20.01

20.01
0.00
0.00

20.97*
0.13* 20.12*

prior to Lowess smoothing and ANN modeling
(Brosse et al. 1999b, 1999c; Lek and Guégan
2000).

Relationships between age-0 perch density and
habitat.—Habitat use by age-0 Eurasian perch was
estimated by representing the fish abundance in
each sample as a function of the environmental
variables. Then, to vizualize the relationship of
abundance to each variable, the data were fitted
using the locally weighted scatterplot smoother
usually called Lowess (Cleveland 1979). In this
procedure, each sample is smoothed using a de-
fined proportion of the neighbors nearest to the
target point. Optimal fitting is obtained iteratively
by minimizing the residuals between the observed
and estimated values. The proportion of the sam-
ples perfectly fitted by Lowess is indicated by the
f value of the fitted distribution. The parameter f
varies between 0 and 1 according to the sensitivity
of the analysis and is determined empirically by
testing various possibilities and selecting the one
that provides the best ability to visualize general
data tendencies (Trexler and Travis 1993). Two of
the major advantages of this method are that it can
accurately fit both linear and nonlinear data and it
automatically shows the degree of dependence of
the response to the predictor. However, no equation
is associated with the Lowess curve due to its non-
parametric nature, so only graphical results are
obtained. These results could be validated by a
nonparametric statistical test (e.g., Mann–Whitney
or Kruskal–Wallis) after sorting the environmental
values into different classes, but we did not do this
because sorting data into classes obscures its con-
tinuous nature. Moreover, Lowess fitting is com-
monly used in ecology and provides reliable de-
scriptive information without further analysis

(Trexler and Travis 1993; James et al. 1996; Brosse
et al. 1999c).

Prediction of age-0 perch density.—The whole
data matrix (i.e., 306 records 3 8 environmental
variables) was divided into two submatrices. First,
the 62 records with nonzero values for perch den-
sity were isolated from the 244 with zero values
(i.e., no perch). Null values are often removed
from analyses because they make the data noisy,
greatly affect the statistical analysis, and can in-
duce bias in the predictions of abundance and spa-
tial distribution (Pennington 1996). Nevertheless,
null values account for an ecological reality and,
according to ter Braak and Looman (1995), should
not be entirely discarded. As we could not include
all of the null values (if most samples are null, the
model will consider nonnull values as outliers),
we randomly selected 25% of the records without
fish (i.e., 61 records) and added them to the first
submatrix, leading to a final matrix containing 123
records. The remaining 183 null records were
treated as a validation data set that was used to
test model predictions of the absence of perch.
These matrices were used to calculate the GAM
and the MLR and ANN models.

The predictive model of age-0 Eurasian perch
habitat use was developed using a multilayer, feed-
forward ANN (Rumelhart et al. 1986). The pro-
cessing elements in the network, called neurons,
are arranged in layers. The first layer, called the
input layer, connects with the input variables. In
our case, it comprised eight neurons corresponding
to the eight environmental variables (Figure 1).
The last layer, called the output layer, connects to
the output variable(s). In our case, there was a
single neuron corresponding to the value of the
dependent variable (perch density). The layer be-
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FIGURE 1.—Schematic of the three-layer, feed-forward artificial neural network used to estimate the density of
age-0 Eurasian perch. The network consists of (1) eight input neurons corresponding to the eight independent
environmental variables (Dep 5 depth, Dis 5 distance from the bank, Slo 5 slope, Bou 5 percent boulders, Peb
5 percent pebbles, Gra 5 percent gravel, Mud 5 percent mud, and Veg 5 percent flooded vegetation), (2) five
hidden-layer neurons, and (3) one output neuron representing the dependent variable. The connections between
neurons are shown by solid gray lines.

tween the input and output layers is called the
hidden layer and was composed of five neurons
(networks with more hidden neurons or two hidden
layers did not do significantly better). The network
configuration is determined empirically by testing
various possibilities and selecting the one that pro-
vides the best compromise between bias and var-
iance, that is, the best prediction (see Geman et
al. 1992 and Kohavi 1995 for more details). Each
neuron is connected to all of the neurons of ad-
jacent layers and receives and sends signals
through these connections. Signals are transmitted
in only one direction: from the input layer to the
output layer through the hidden layer. The con-
nections are given weights that modulate the in-
tensity of the signals they transmit. To extract bi-
ological information from the model, we used Gar-
son’s algorithm (1991) as modified by Goh (1995)
to determine the relative importance of the envi-
ronmental variables to perch habitat use based on
the weights between the input and hidden and hid-
den and output layers that were calculated by the
network.

As a check, the ability of the ANN to predict
age-0 Eurasian perch density was compared both
with that of classical multiple linear regression and
with that of a more advanced nonlinear regression,
the generalized additive model (Hastie and Tib-
shirani 1990). The GAM, a generalization of the

MLR and generalized linear models, is a non-
parametric regression method that models the de-
pendent variable as the additive sum of unspecified
functions of covariates. The least-squares and
maximum likelihood methods used in the MLR
and generalized linear models are replaced by
quasilikelihood methods that rely on a nonpara-
metric scatterplot smoother. The three modeling
procedures (i.e., ANN, MLR, and GAM) were ap-
plied to the same data matrices after log10(x 1 1)
transformation of age-0 perch density data (123
records 3 8 environmental variables to derive the
models and 183 null records 3 8 variables to test
their predictions as to the absence of perch). The
predictive ability of the models was estimated us-
ing the leave-one-out cross-validation test applied
to the first data set (123 records), where each sam-
ple is left out of the model formulation in turn and
predicted once to determine model performance.
This procedure is appropriate when the data set is
quite small or each sample is likely to have
‘‘unique information’’ (Kohavi 1995). This meth-
od constitutes a reliable alternative to the hold-out
procedure commonly used for larger data sets (Ef-
ron 1983; Kohavi 1995). Model reliability was as-
sessed in terms of two criteria: the coefficient of
determination (r2) between the observed and es-
timated values, which provides information on the
significance of the model; and SDPE/SDT, the ratio
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of the standard deviation of the prediction error to
that of the training data. One minus this ratio de-
scribes the variance explained by the model, and
a value below 1 indicates good regression perfor-
mance (Statistica 2000).

Results

Environmental Variables and Age-0 Perch
Density

The scatterplots of the individual environmen-
tal variables versus age-0 Eurasian perch density
(Figure 2) illustrate the heterogeneity of the data
set. A large range of responses was obtained for
most of the environmental variables, and any a
priori interpretation of the plots was not possible.
Data fitting by parametric functions did not reveal
any significant (P . 0.05) tendencies, leading us
to use the nonparametric Lowess smoothing
method. With that method, the influence of each
of the eight environmental variables on age-0
perch abundance was clearly visualized. Four of
these variables (depth, distance from the bank,
slope of the bottom, and percentage of flooded
vegetation) produced large variations in the Low-
ess curve and thus influenced perch habitat use
(Figure 2). The four variables pertaining to the
bottom substratum were less important, as the
Lowess curve varied little. For the four most im-
portant variables, the Lowess fitting was a bell-
shaped curve, indicating that age-0 perch density
was maximal for medium values of the variables
and lower for extreme values. As a result, density
peaked in medium depths (0.25–0.45 m; Figure
2a) and distances from the bank (5–15 m; Figure
2b). In the same way, areas with gentle slopes
were more densely inhabited than those with ei-
ther sheer and no slopes (Figure 2c). Moreover,
age-0 perch abundance was higher in areas with
medium flooded-vegetation cover (40–60%) than
in areas with low or high vegetation density (Fig-
ure 2d). With respect to the less influential var-
iables, perch seemed indifferent to the percentage
of fine substratum (mud; Figure 2e), but we no-
ticed sharply lower abundance in larger substrata:
perch were never found in areas with gravel and
very seldom in areas with pebbles and boulders.
As a consequence, age-0 perch were mainly lo-
cated in intermediate areas that could be identi-
fied as an edge between flooded vegetation and
open water.

Age-0 Perch Density Models

The MLR analysis produced the following equa-
tion (r2 5 0.20):

log (perch density 1 1) 510

0.729 2 0.909 · Dep 1 0.008 · Dis

1 0.266 · Slo 2 0.008 · Bou 2 0.030 · Peb

2 0.013 · Gra 2 0.002 · Mud 2 0.001 · Veg,

where Dep 5 depth, Dis 5 distance from the bank,
Slo 5 slope, Bou 5 percent boulders, Peb 5 per-
cent pebbles, Gra 5 percent gravel, Mud 5 percent
mud, and Veg 5 percent flooded-vegetation cover.

Although the overall model was significant (P
, 0.01), it did not perform better than a simple
mean estimator, as the ratio of SDPE to SDT was
1.015, indicating that no variance was explained
by the model. The predicted values showed that
the medium and high values of fish abundance
were always underestimated and most of the null
values were either overestimated or given aberrant
values (i.e., negative fish densities; Figure 3a). The
points were not well distributed along the line of
perfect prediction (the 458 line).

The GAM produced a slight improvement over
the MLR model (r2 5 0.33, P , 0.01) but also
systematically underestimated high values of fish
density and either overestimated or gave aberrant
values for a large proportion of the null values
(Figure 3b). Thus, even if the performance of the
GAM was slightly better than that of the MLR
model, with a SDPE2SDT ratio of 0.83 it was still
not acceptable, as the variance explained by the
model was only 17%.

Predictions by the ANN models using the leave-
one-out procedure (the ANN calibration process,
in which correlation coefficients between the ob-
served and predicted values of the training and
testing data sets are plotted against the number of
hidden neurons and the number of iterations, is
illustrated by Lek et al. [1996]) yielded an r2 of
0.78 (P , 0.01). Although some samples were
under- or overestimated, a large proportion were
well distributed along the 458 line (Figure 3c).
Moreover, the SDPE2SDT ratio was 0.49, a good
regression performance with more than 50% of the
variance being explained by the model.

The validation tests on the data matrix with 183
null samples produced different results with the
MLR, GAM, and ANN approaches. A paired com-
parison of the predicted values with the
Mann2Whitney nonparametric test showed sig-
nificant (P , 0.01) differences between the MLR
model and the GAM (Z 527.88), the MLR and
ANN models (Z 529.33), and the GAM and the
ANN model (Z 526.04). Although the GAM per-
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FIGURE 2.—Bivariate plots of the eight environmental variables against log10 transformed age-0 perch density
(PD). Lowess curves (solid lines) were used to fit the data. The variables and their f values, which indicate the
proportion of each sample that was perfectly fitted by the Lowess procedure, are as follows: (a) depth, 0.45; (b)
distance from the bank, 0.35; (c) slope, 0.35; (d) percent flooded vegetation, 0.50; (e) percent mud, 0.50; (f) percent
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gravel, 0.50; (g) percent pebbles, 0.50; and (h) percent boulders, 0.50. The value of f ranges from 0 and 1 according
to the sensitivity of the analysis and is determined empirically by testing various possibilities and selecting the
one that provides the best visualization of the general data tendencies.

formed significantly better than the MLR model
(predicted values closer to null), the two regression
methods systematically predicted medium perch
densities. With the ANN model, most predicted
values were closer to null than those predicted by
the GAM or the MLR model (Figure 4). However,
the ANN model did predict a high perch density
for some samples (i.e., the outlier and extreme
values in Figure 4).

In terms of the ecological information extracted
from the ANN model, the results of the Gar-
son2Goh algorithm stress the importance of four
environmental variables (Figure 5), with contri-
butions of roughly 22% for distance from the bank,
19% for depth and percent flooded vegetation, and
14% for slope. The four remaining variables each
contribute less than 10% and therefore have lim-
ited influence on perch habitat selection. These
results are in accord with those of the Lowess anal-
ysis, which also stressed the importance of the first
four variables.

Discussion

Age-0 Perch Habitat Use

The information provided by the Lowess curves
showed that age-0 Eurasian perch mainly occupied
shallow, gently sloping, littoral areas with mod-
erate densities of macrophytes. This is quite com-
mon for age-0 fish, for which vegetation and shal-
low water provide safety against predation by pi-
scivorous fish, such as adult perch and northern
pike Esox lucius, which are abundant in the open
areas without vegetation in Lake Pareloup (Brosse
1999; Laffaille et al. 2001). Colonization of refuge
areas by age-0 perch has already been demonstrat-
ed in controlled environments (Persson and Eklöv
1995; Eklöv and Persson 1996; Jacobsen and Berg
1998). However, these studies only considered
vegetation density, without giving any attention to
the other environmental characteristics that are
likely to influence habitat choice. We obtained ad-
ditional information on habitat use by age-0 perch
by means of the accurate, precise representation
of the environment afforded by quantitative mea-
surements of a variety of environmental variables.
Within littoral areas, the shallowest, most gently
sloping areas closest to the banks were avoided.
There are two possible reasons for this. First, age-

0 perch may not have colonized these areas to
avoid predation by terrestrial predators such as pi-
scivorous birds (Winfield 1990). Although pisciv-
orous birds are not particularly abundant at Lake
Pareloup, the avoidance of shallower waters may
be attributed to an acquired behavior called ‘‘the
ghost of past predation’’ (Gliwicz and Warsaw
1992). Second, this behavior may have been re-
lated to the avoidance of competition with age-0
rudd Scardinius erythrophthalmus, a phenomenon
that Eklöv and Hamrin (1989) have demonstrated
in controlled environments. The fact that in Lake
Pareloup rudd inhabit shallow littoral areas in great
numbers during summer (Brosse 1999) supports
this second hypothesis.

Age-0 Eurasian perch were primarily found in
areas with between 30% and 70% vegetative cover,
a finding that agrees with the results obtained in
controlled and artificial environments (Christensen
and Persson 1993; Diehl 1993; Persson and Eklöv
1995; Jacobsen and Berg 1998; Jacobsen and Per-
row 1998). These studies have shown that age-0
perch are generally found in flooded vegetation,
which affords protection from predators and pro-
vides a rich foraging habitat (Diehl 1993; Persson
and Eklöv 1995). However, areas with more than
70% vegetative cover were avoided, as such veg-
etation density could reduce feeding ability (Diehl
1993). In the same way, the age-0 perch’s colo-
nization of edge areas between vegetated and open
waters and indifference toward substrate type sup-
ports the hypothesis of opportunistic feeding be-
havior by a fish that can use various food items
(Hammer 1985; Dubois et al. 1994). However, age-
0 perch were rarely found in gravel, pebbles, or
boulders because these substrata are usually far
from vegetation and are dangerous because of the
higher abundance (Brosse 1999; Laffaille et al.
2001) and enhanced efficiency of predators such
as northern pike and adult perch (Brabrand and
Faafeng 1994; Eklöv 1997).

Most of the ecological knowledge of perch hab-
itat use has been derived from experiments con-
ducted in artificial and controlled environments
under predation and competition pressures that
were very different from those in nature (Eklöv
and Hamrin 1989; Diehl 1993; Eklöv and Persson
1996; Jacobsen and Berg 1998). As a consequence,
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FIGURE 3.—Model predictions of age-0 perch densities
(PDs) versus observed densities. Panel (a) shows the results
for the multiple linear regression (MLR) model, panel (b)
the results for the generalized additive model (GAM), and
panel (c) the results for the artificial neural network (ANN)
model. The 458 line indicates a perfect fit.

the results of studies that used cages or experi-
mental ponds need to be interpreted with caution
(Englund 1997) and should be verified in natural
environments (Townsend et al. 2000). Although
habitat use was more complex in our study than
in these experiments, the perch tended to colonize
areas with considerable structural heterogeneity.
Such habitat preferences suggest a trade-off be-
tween the search for food and the requirement for
shelter from predation. This trade-off between
costs and benefits is well known in ecology (Pers-
son and Eklöv 1995), but it differs among organ-
isms and environments. As a consequence, our re-
sults—which were obtained in a natural, undis-
turbed environment—provide a quantitative de-
scription of habitat use by age-0 perch as well as
support for the experimental and theoretical results
in the literature that emphasize the importance of
both structural characteristics and biotic interac-
tions to habitat use by age-0 fish.

Prediction Capability of the Models

The MLR results showed that the main pro-
cesses determining the abundance and habitat use
of age-0 Eurasian perch can be approximated by
linear functions to only a limited extent. Even with
complex nonlinear transformation of the variables
(i.e., the GAM), regression models were not able
to faithfully reproduce the behavior of real systems
when very low or very high values of the variables
were considered. However, the improvement in the
predictions produced by going from the MLR
model to the GAM testifies to the nonlinearity of
the variables and justifies the use of ANNs, which
enable modeling of nonlinear systems (Goh 1995;
Lek et al. 1996; Brosse et al. 1999b). In the present
study, the network was able to reliably predict age-
0 perch abundance on the basis of the eight en-
vironmental variables taken into account. Never-
theless, in some samples, medium fish densities
were predicted where no perch were actually found
(i.e., some areas that should have been suitable for
age-0 perch were not being occupied). To explain
this, we can hypothesize that these data points re-
flect a bias in the sampling methodology owing
either to fish escapement or to underestimation by
the electrofishing technique (Bain et al. 1985;
Dewey 1992).

In the same way, the underestimation of some
of the medium and high age-0 perch densities was
due to the scarcity of samples with such densities.
Because the network’s predictive capabilities are
limited by the information in the training data set,
the limited number of points where fish were found
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FIGURE 4.—Results of model validations using 183 samples in which no perch were found. The dashed line
represents the actual null values. The box plots represent the predictions by the multiple linear regression (MLR)
model, the generalized additive model (GAM), and the artificial neural network (ANN) model. The bold line within
each box shows the 50th percentile; the top and bottom lines show the 75th and 25th percentiles, respectively. The
whiskers represent the 10th and 90th percentiles, the open circles samples in which perch density was more than
1.5 box lengths from the 75th percentile (‘‘outliers’’), and asterisks samples in which perch density was more than
3 box lengths from the 75th percentile (‘‘extremes’’).

FIGURE 5.—Percentage contributions of the eight in-
dependent variables obtained by applying the Gar-
son2Goh algorithm to the ANN model results. Abbre-
viations are given in the caption to Figure 1.

and unmeasured but potentially important biotic
or abiotic variables (such as water temperature and
species interactions) did not allow the network to
deal with all the factors that might influence a fish
distribution. Nevertheless, a large proportion of
the points in the scatterplot are distributed along
the diagonal representing the best predictions, and
nearly all of the samples with medium and high
observed values of age-0 perch density were pre-
dicted to be suitable habitats (even if some den-
sities were underestimated). We can thus conclude
that the ANN model was able to accurately predict
age-0 perch density in Lake Pareloup on the basis
of the environmental variables in the model,

whereas the MLR model and the GAM proved to
have serious shortcomings, as indicated by both
their r values and their SDPE2SDT ratios. In ad-
dition, the predictive accuracy of the models was
checked by means of the validation test on the 183
null samples. In that test, most of the perch den-
sities predicted by the MLR model and the GAM
were aberrant, whereas the ANN model reliably
predicted null samples, with most predicted den-
sities close to null. However, the ANN model pre-
dicted that some null samples would be densely
populated. Again, these samples could correspond
to areas in which the environment is suitable for
perch but which the species happens not to have
colonized, so that these predictions constitute es-
timates of the potential fish density in those sam-
ples.

In terms of the influence of the individual en-
vironmental variables on the predictions of age-0
Eurasian perch density as assessed through the
Garson2Goh algorithm, the results were consis-
tent with those obtained using the Lowess fitting
of the observed data. These results indicate the
importance of flooded vegetation, distance from
the bank, depth, and bottom slope on the habitat
use of age-0 perch and demonstrate the suitability
of the ANN approach for describing nonlinear in-
teractions between variables in complex ecological
systems.
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Both analyses (Lowess and the comparison of
the MLR, GAM and ANN model results) showed
that the relationships between perch abundance
and environmental characteristics are highly non-
linear, which explains why traditional linear sta-
tistical methods often fail to accurately define fish
habitat use. Furthermore, ANNs constitute an ef-
ficient predictive tool that also provides relevant
ecological information. Consequently, ANNs and
Lowess can be used together as predictive and ex-
planatory tools when common statistical methods
are limited by the nonlinearity of the data. More
particularly, this study shows that overall trends
in fish distribution can be accurately assessed by
Lowess and ANNs using a few relevant environ-
mental variables, thus providing insights into the
ecological meaning of such a distribution on a
small spatial scale.
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Persson, L., and P. Eklöv. 1995. Prey refuges affecting
interactions between piscivorous perch and juvenile
perch and roach. Ecology 76:70–81.

Rossier, O. 1995. Spatial and temporal separation of
littoral zone fishes of Lake Geneva (Switzerland–
France). Hydrobiologia 300/301:321–327.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986.
Learning representations by back-propagating error.
Nature (London) 323:533–536.

Savino, J. F., and R. A. Stein. 1989. Behavioural inter-
actions between fish predators and their prey; ef-
fects of plant density. Animal Behaviour 37:311–
321.

Statistica. 2000. Statistica for Windows, computer pro-
gram manual. StatSoft, Inc., Tulsa, Oklahoma.

ter Braak, C. J. F., and C. W. N. Looman. 1995. Re-
gression. Pages 29–77 in R. G. H. Jongman, C. J.
F. ter Braak, and O. F. R. Van Tongeren, editors.
Data analysis in community and landscape ecology.
Cambridge University Press, Wageningen, The
Netherlands.

Townsend, C. R., J. L. Harper, and M. Begon. 2000.
Essentials of ecology. Blackwell Scientific Publi-
cations, Malden, Massachusetts.

Trexler, J. C., and J. Travis. 1993. Non-traditional re-
gression analyses. Ecology 74:1629–1637.

Winfield, I. J. 1990. Predation pressure from above:
observations on the activities of piscivorous birds
at a shallow eutrophic lake. Hydrobiologia 191:
223–231.


