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Utilisation of non-supervised neural networks and principal
component analysis to study fish assemblages
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Abstract

Kohonen self-organizing maps (SOM) belong to the non-supervised artificial neural network modelling methods. It
typically displays a high dimensional data set in a lower dimensional space. In this way, that method can be
considered as a non-linear surrogate to the principal component analysis (PCA). In order to test the efficiency of
SOM on complex ecological data gathered in the natural environment, we made a comparison between PCA and
SOM capabilities to analyse the spatial occupancy of several European freshwater fish species in the littoral zone of
a large French lake. The same data matrix consisting of 710 samples and 15 species was analysed using PCA and
SOM. Both methods provided insights on the major trends in fish spatial occupancy. However, a more detailed
analysis showed that only SOM was able to reliably visualise the entire fish assemblage in a two dimensional space
(i.e. both dominant and scarce species). On the contrary PCA provided irrelevant ecological information for some
species. These drawbacks were afforded to data heterogeneity, scarce species being poorly represented on the PCA
plane. These results led us to conclude that SOM constitute a more reliable data representation method than PCA
when complex ecological data sets are used. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ecological applications of multivariate statistics
have expanded tremendously during the last two
decades (Gauch, 1982; Legendre and Legendre,
1998). Among these methods, the principal com-
ponent analysis (PCA) is now used routinely by
ecologists (Townsend et al., 1997; Grossman et
al., 1998; Brosse et al., 1999a; Lamouroux et al.,
1999). It is known as able to simplify large data

sets with reasonable loss of information and to
assess intercorrelation among variables of interest
(Grossman et al., 1991). However, the informa-
tion given by PCA techniques suffers from some
drawbacks in that the relationships between vari-
ables in environmental sciences are often non-lin-
ear (James and McCulloch, 1990), while the
methods used are based on linear principles.
Transformation of non-linear variables by loga-
rithmic, power or exponential functions can ap-
preciably improve the results, but have often
failed to fit the data (Lek et al., 1996; Pennington,
1996; Brosse et al., 1999b). In the same way,
ecologically relevant, but unusual observations,
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are frequently deleted from the data sets to reduce
data heterogeneity (Gauch 1982; Copp et al., 1994).
Although these deletions satisfy statistical assump-
tions, they are likely to bias the ecological interpre-
tation of the results (Fore et al., 1996). To overcome
these difficulties, the artificial neural networks
which are known to be efficient in dealing with
heterogeneous data sets should constitute a rele-
vant alternative tool to traditional statistical meth-
ods (Lek et al., 1996; Lek and Guégan, 2000).

The self organizing map (SOM) algorithm, a
non-supervised neural networks method, performs
the same task as PCA (Kohonen, 1995). The main
usefulness of this type of approach is to get an
objective image of the populations assemblage with
results uninfluenced by our knowledge of the sam-
ples and of the environmental features. Although
SOM have scarcely been used in ecology, successful
results were obtained by Aurelle et al. (1999) and
Giraudel et al. (2000) for classification of fish
populations on the basis of genetic data and by
Chon et al. (1996) for communities patternizing.
However, SOM and PCA capabilities to visualise
data tendencies have only been compared using a
well known reference data set (Giraudel et al.
submitted) composed of few samples (10 samples
and eight species). Although this data was already
used by Ludwig and Reynolds (1987) and Chon et
al. (1996) as an example for linear and non-linear
statistical methods validation and explanation, it
can not be considered as representative of the
complexity of most experimental data usually gath-
ered by ecologists.

In this work, we compared SOM and PCA
capabilities to visualise in a two-dimensional space
a complex data basis (710 samples and 15 species)
composed of fish abundances in a large lake. The
fish population assemblage obtained using the two
methods were compared and discussed according
to current ecological knowledge.

2. Material and methods

2.1. Study site and sampling

Studies were carried out on lake Pareloup. It is
located in the south-west of France, near the city

of Rodez. It covers a total surface area of 1250 ha
for a volume of approximately 168×106 m3. Fish
sampling was performed in a restricted littoral zone
of the lake using point abundance sampling by
electrofishing (Nelva et al., 1979) to evaluate the
spatial occupancy of the fish populations. Sampling
was performed in July 1998 giving rise to 710
samples. It is during this month that fish species
richness is maximal in the littoral zone (Brosse,
1999). For each sample, fish were counted and
determined at the species level. When fish larvae
and juveniles were collected, they were preserved in
four-percent formaldehyde solution and then iden-
tified and numbered at the laboratory. For each fish
species, individuals recorded were divided into two
populations: young of the year (0+ ) and older fish
called adults. This separation was done to avoid
biases induced by the different spatial occupancy of
0+ and adults due to individuals habitat and
feeding characteristics depending on size and age,
as underlined by Persson and Greenberg (1990).
For reading convenience, throughout this paper,
we refer to analysis of 15 fish species, although two
of the fish groups are in fact different age classes
of the same species.

2.2. Data analyses

In order to extract the structure of the high-di-
mensional data formed by the 710 sample units
(SUs) of abundance of the 15 species, two methods
were used: firstly, a commonly used method for
data analysis: PCA (Pearson, 1901); and secondly,
an unsupervised neural network, the Kohonen
SOM algorithm (Kohonen, 1995).

2.2.1. Principal components analysis
PCA is used to reduce the dimensionality of data,

and to transform interdependent variables into
significant and independent components. This
statistical method has been extensively described
elsewhere (e.g. Gauch, 1982; Legendre and Legen-
dre, 1998). In the present work, fish species abun-
dances were first log (x+1) transformed in order
to satisfy the assumptions of PCA and then submit-
ted to centred and normalised PCA, which reduces
the influence of species variation (Doledec and
Chessel, 1991) and best reveals patterns in data sets
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(Gauch, 1982). The analysis was therefore con-
ducted on the correlation matrix. PCA was car-
ried out using version 3 of StatLab (Optima-
Deltasoft, 1997).

2.2.2. Kohonen self-organizing map
The Kohonen neural network consists of two

layers: the first (input) layer is connected to a
vector of the input data set (the 15 fish popula-
tions, n=15 neurons in the input layer); the
second (output) layer forms a map, a rectangu-
lar grid with 15 by 10 neurons laid out on a
hexagonal lattice (S=150 neurons in the output
layer) (Fig. 1). The number of cells on the out-
put layer were experimentally defined as the best
compromise between representation clarity and
computing time. Each neuron of the output
layer stores a virtual unit (VU) with species
abundance to be computed.

The aim of the SOM algorithm is to visualise
in a two dimensional space the SU distribution
by way of the VU distribution. VUs which are
neighbours on the grid are expected to represent
neighbouring clusters of SUs; consequently, dis-
tant SUs (according to species abundance) are
expected to be distant in the feature space. To
achieve this, many distance measures may be

used (e.g. Euclidean distance, Mahalanobis dis-
tance, Manhattan distance). The distance mea-
surement method is selected to provide the most
accurate data representation on the map. In this
study, we used the relative Euclidean distance
(RED) (Orloci et al., 1979) in order to equalise
the importance of species relative to SUs with
high and low total abundances (Ludwig and
Reynolds, 1987), aiming to avoid biases due to
over or under representation of some species
abundances. Then, the distance between two
sample units SUj and SUk was calculated as fol-
lows:

RED(SUj, SUk)=
� �

i=S

i=1

� Xij

�l Xij

−
Xik

�l Xlk

�2

, (1)

with Xij : the abundance of the species i in the
SUj, in other words, the computation was based
on the relative proportions of species in the
SUs. For this purpose, the input data was stan-
dardised relative to total SU abundances during
the SOM computation.

The SOM algorithm is an unsupervised learn-
ing procedure and can be summarised as follows
(see Kohonen, 1995 for more detail):
� The virtual units (VUk, 1�k�S) are ini-

tialised with random samples drawn from the
input data set.

� The VUs are updated in an iterative way:
� A sample unit SUj is randomly chosen as

an input unit.
� The distance between SUj and each VU is

computed.
� The virtual unit VUc closest to the input

SUj, or in other words, the neuron which
responds maximally to this input is se-
lected and called ‘best matching unit’
(BMU).

� The BMU and its neighbours are moved
slightly towards the input unit SUj.

The above described training procedure was
broken down into two phases as previously
defined by Giraudel et al. (2000):
� Ordering phase (the 2000 first steps): the VUs

are highly modified in a wide neighbourhood
of the BMU.

Fig. 1. Representation of the non-supervised artificial neural
network (i.e. Kohonen neural network), showing the input
neurons and the output neurons organised on a rectangular
two dimensional grid. Each input neuron is fed by one fish
population and the weight computed by each neuron is repre-
sented on the output grid.
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Fig. 2. Occurrence (number of sites where the species is present) and abundance (total number of individuals) of the 15 fish species.
Species abundances were represented in log scale to avoid an undue influence of the most abundant species on the figure. Small
letters (x) represent 0+ fish populations and capitals followed by ‘A’ correspond to adults (XA). a, AA: bleak (Alburnus alburnus);
e, EA: pike (Esox lucius); g, GA: gudgeon (Gobio gobio); LA: Pumpkinseed (Lepomis gibbosus) (only adults were collected during the
survey period); p, PA: perch (Perca flu�iatilis); r, RA: roach (Rutilus rutilus); s, SA: rudd (Scardinius erythrophthalmus); t, TA: tench
(Tinca tinca).

� Tuning phase (75 000 steps): only the VUs
adjacent to the BMU are lightly modified.
At the end of training, the species abundance

are known for each VU, the BMU is deter-
mined for each SU, and each SU is set in the
corresponding hexagon of the Kohonen map.

The SOM have been computed on a PC with
an Intel Pentium PIII-500 using MATLAB soft-
ware with a program file written by the authors
(JLG and SL).

3. Results and discussion

The descriptive analysis of the data matrix
considering abundance and occurrence of the 15
species revealed the heterogeneity of the data set
(Fig. 2), such a pattern usually being observed
in ecological data (Pennington 1996). Within the
considered assemblage, two species were numeri-
cally dominant (0+ rudd and 0+ roach) and
represented respectively 71 and 21% of the 9054
fish collected. The remaining 13 species each ac-
counted for less than 3% of the total fish num-
ber. In the same way only three species occurred
in more than 9% of the samples with only one
widespread species (0+ rudd, present in 21% of
the samples) and two moderately occurrent spe-
cies (0+ roach and 0+ pike, present in 9% of
the samples). The remaining species were present

in less than 4% of the samples. Finally, within
the entire data matrix (710 records), no fish
were found in 409 records (i.e. 58% of the sam-
ples). Owing to the different degrees of patchi-
ness and abundance of the species, this data set
can be considered as a typical example of com-
plex ecological data (Begon et al., 1996). In the
same way, the high data heterogeneity consti-
tutes one of the major limitations which is likely
to induce biases for most statistical analysis and
representations, as already underlined by Pen-
nington (1996) and ter Braak and Verdonschot
(1995).

3.1. Principal component analysis

The PCA allowed the 15 fish species abun-
dances to be taken into account simultaneously
aiming to visualise the spatial fish assemblage
within the studied area. After logarithmic trans-
formation of the variables, the PCA first and
second axis accounted for 10.6 and 10.1% of the
total variance respectively (Fig. 3a). This low
inertia of the two first axes testified for the com-
plexity of the ecological trends to be visualised
and constitutes itself a limitation of the reliabil-
ity of the PCA results (Gauch, 1982). Consider-
ing both correlation and contributions, the first
axis showed an opposition between two young
fish species (0+ roach and 0+ perch) and two
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adult species (adult roach and adult bleak). The
second axis showed an opposition between 0+
rudd and the two previous species groups (Fig.
3b). We can also identify an opposition between
most adult fish species (bottom right part of
Fig. 3b) and 0+ pike. Moreover adults were
found independent from 0+ roach and 0+
perch. This opposition or independence between
0+ and adult fishes is ecologically relevant and
well known by ichthyologists. In lakes, young
fish colonise mainly the shallow littoral areas
where they can find both abundant feeding re-
sources and shelter from fish predators (e.g.
adult perch) (Werner et al., 1977; Savino and
Stein, 1989; Brosse and Lek, 2000). In the same
way, the syntopy of 0+ roach and 0+ perch
was due to the similar habitats and feeding re-
quirements of the two species (Hammer, 1985;
Machacek and Matena, 1997). Moreover, the
spatial separation of 0+ rudd and 0+ roach
was due to an avoidance of interpopulation
competition (Johanson, 1987). Even though
these general trends were ecologically relevant,

the consideration of scarce species did not
provide useful information: the spatial occu-
pancy of low frequent and low abundant species
(e.g. 0+ gudgeon, 0+ bleak, adult rudd) was
poorly represented on the PCA f1× f2 plane.
These species were located close to the centre of
the plane, without any significant relationship
with the two first axes (the other plane represen-
tations did not provide better results), whereas it
is known that all the species contribute to the
community assemblage (Cao et al., 1998). Simi-
larly, irrelevant information was given for 0+
pike, which was found independent from the
other young fish populations, whereas actually,
this species shares habitat characteristics with
0+ cyprinids (e.g. roach, rudd) and prey on
these populations (Eklöv and Hamrin, 1989;
Eklöv and Persson, 1996). That drawback could
be due to the low abundance of 0+ pike in
each sample, indeed cannibalism is common for
0+ pike (Holland and Huston, 1984; Lejolivet
and Dauba, 1988), and a given sample never
contains more than two individuals.

3.2. Kohonen self-organizing map

The results of the distribution of the individu-
als belonging to the different populations on the
Kohonen map are given in Fig. 4. To interpret
this map, it should be noted that two neigh-
bouring hexagons contain more closely related
individuals than two distant ones. Therefore, the
orientation of the map (i.e. the positions of the
SUs in one side of the map or in another one)
is not important and only the relative positions
of the SUs (i.e. the distances between SUs) have
to be taken into account. The same general
trends as for the PCA were found in the SOM,
there being a separation between adults and
young fishes in addition to the syntopy of 0+
roach and 0+ perch. However, 0+ pike, was
not found independent from the 0+ cyprinids,
but logically associated with both 0+ roach
and 0+ rudd which constitute usual preys for
0+ pike (Eklöv and Hamrin, 1989; Eklöv and
Persson, 1996). A more precise study of this
map shows several interesting features, and most
of the species exhibited a complex organisation.

Fig. 3. Results of the normalised principal component analysis
(PCA) for the 15 fish species: (a) histogram of eigenvalues; (b)
distribution of the 15 species on the F1×F2 plane. Small
letters (x) represent 0+ fish populations and capitals followed
by ‘A’ correspond to adults (XA). a, AA: bleak (Alburnus
alburnus); e, EA: pike (Esox lucius); g, GA: gudgeon (Gobio
gobio); LA: Pumpkinseed (Lepomis gibbosus) (only adults were
collected during the survey period); p, PA: perch (Perca flu�i-
atilis); r, RA: roach (Rutilus rutilus); s, SA: rudd (Scardinius
erythrophthalmus); t, TA: tench (Tinca tinca).
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Fig. 4. Distribution of the fish species on the self organizing Kohonen map (SOM). In each hexagon, the size of the print is
proportional to the expected proportion (p) of the population considered in the hexagon. Small letters (x) represent 0+ fish
populations and capitals followed by ‘A’ correspond to adults (XA). a, AA: bleak (Alburnus alburnus); e, EA: pike (Esox lucius); g,
GA: gudgeon (Gobio gobio); LA: Pumpkinseed (Lepomis gibbosus) (only adults were collected during the survey period); p, PA: perch
(Perca flu�iatilis); r, RA: roach (Rutilus rutilus); s, SA: rudd (Scardinius erythrophthalmus); t, TA: tench (Tinca tinca).

Most adults, regardless of the species, are located
in the upper right corner of the map, and both
dominant and scarce species are grouped together.
Moreover, although adults are mainly separated
from 0+ fishes, some adult tench are found with
0+ tench. These adults were mature individuals
still spawning in July (Brosse, 1999). In the same
way, within the 0+ fish, the group which includes
perch, and roach is separated from the group
tench and, rudd. These two last species are known
as being closely associated with dense vegetation
areas, whereas 0+ perch and 0+ roach usually
colonise the transition area between littoral
macrophytes and open water (Hammer, 1985;
Machacek and Matena, 1997; Brosse and Lek,
2000). Finally, 0+ gudgeon was found indepen-
dent from all the other species as it is known to
inhabit shallow sandy bottoms avoided by the
others 0+ cyprinids (Mastrorillo et al., 1996).

4. Conclusion

Both PCA and SOM methods identified the
same general patterns of fish spatial occupancy
such as the separation of adult and young of the
year populations, but PCA showed serious short-
comings when considering scarce species. PCA,
according to Melssen et al. (1993), may not keep
sufficient information, and therefore provided
some irrelevant information considering scarce
species. Frequently, these species, which induce
too much heterogeneity in the data matrix are
frequently excluded for purely statistical reasons
prior to classical multivariate processing (Gauch,
1982; Copp et al., 1994). However, this pruning
procedure seriously violates general ecological ob-
servations and theory, leading to an unacceptable
loss of ecological information. According to Fore
et al. (1996), the removal of scarce species consti-
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tutes a striking example of statistical requirements
eclipsing biological common sense. On the con-
trary, SOM provided a reliable image of the entire
assemblage (i.e. considering both dominant and
scarce species). Even though SOM is similar to
PCA given its ability to reduce the dimensionality
of data, its better efficiency to deal with non-lin-
ear and heterogeneous data is clearly illustrated.
We can therefore consider that SOM, which al-
lows all the species to be considered without
biasing the statistical results, constitute a good
alternative to common multivariate statistical
analysis. Unsupervised network algorithms can
therefore be successfully applied to complex eco-
logical data and are able to provide a realistic
image of the spatial assemblage of populations
without using a priori knowledge about their or-
ganisation. Currently, SOM constitute a basic vi-
sualisation method for data analysis, and further
studies are required to provide more statistical
and ecological information from the maps. In this
way, the U-matrix methodology (Giraudel et al.
submitted), could constitute a fruitful complement
to the SOM visualisation ability of complex eco-
logical features.
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