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Abstract Artificial neural networks (ANN) are
models inspired by the structure and processes of
biological cognition and learning. To illustrate the
ecological applications of ANN, we present analy-
ses of two complementary examples. ANN is first
used to predict the diversity of macroinvertebrates,
at the macrohabitat scale, in tributaries of a large
river in New Zealand and, second, to predict the
distribution and abundance of several fish species at
the microhabitat scale in a French lake. The predic-
tive abilities of the models were high, with correla-
tion coefficients between observed and estimated
values from 0.61 and 0.92. Moreover, the environ-
mental variables found to be associated with inver-
tebrate diversity and fish abundance were in accord
with results of previous studies. The combination of
ANN with a multivariate analysis of fish community
composition provided both for accurate prediction
of fish assemblages and effective visualisation of
their relationships with environmental variables. On
the basis of these studies in different locations (New
Zealand streams, French lake), involving various
population and community attributes, we conclude
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that ANN is an appropriate tool for both prediction
and explanation of ecological relationships at vari-
ous spatial scales (microhabitat and macrohabitat),
and for a range of aquatic ecosystems (lakes and
rivers), organisms (invertebrates and fish), and eco-
logical descriptors (abundance, Shannon diversity
index, and community composition).

Keywords macroinvertebrates; fish; community
composition; abundance; diversity; river; lake; spa-
tial scales; modelling; artificial neural networks;
back-propagation

INTRODUCTION

Artificial neural networks (ANN), inspired by the
structure and processes of biological cognition and
learning, were developed initially to model
biological functions. They learn from experience and
can rapidly solve difficult computational problems.
In the past decade, research into ANN has shown
explosive growth, ANN models have often been
applied in chemistry (Kvasnicka 1990) and in
physics, for example in studies of speech and image
recognition (Rahim et al. 1993; Dekruger & Hunt
1994; Chu & Bose 1998). Most applications of ANN
in biology have concerned medicine and molecular
biology (Albiol et al. 1995; Faraggi & Simon 1995;
Lo et al. 1995) but with a few examples in the
ecological and environmental sciences beginning in
the 1990s. For instance, Colasanti (1991) perceived
similarities between ANN and ecosystem structure
and functioning and recommended the utilisation of
this tool in ecological modelling. In a review of
computer-aided research in biodiversity, Edwards &
Morse (1995) also emphasised the potential
importance of ANN. Other examples can be found
in different fields of ecology, such as modelling of
the greenhouse effect (Seginer et al. 1994),
predicting phytoplankton production (Scardi 1996;
Recknagel et al. 1997), and predicting various
parameters in fish ecology (Baran et al. 1996; Lek
et al. 1996a,b; Guégan et al. 1998; Brosse et al.
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1999b,c). Most of these studies demonstrated that
ANN performed better than classical linear and non-
linear modelling methods such as multiple linear
regression or generalised additive models. However,
very few studies have dealt with the application of
ANN to the ecology of stream invertebrates or of
multi-species assemblages (Brosse et al. 1999b;
Schleiter et al. 1999).

In this paper we assess the ability of ANN to
predict ecological parameters relating to freshwater
invertebrates and fish. We provide a general
description of the ANN approach and then test the
capacity of ANN models to predict the diversity of
macroinvertebrates in tributaries of the Taieri River
in New Zealand and the distribution and abundance
of several fish species at the microhabitat scale in
Lake Pareloup in France.

MATERIALS AND METHODS

Study sites and sampling

The analysis of macroinvertebrate diversity was
performed on 97 samples taken during summer 1990
from sites dispersed throughout the Taieri River
basin. This river, which is 318 rectilinear km in
length and ranges in elevation from sea level to
1150 m, lies between latitudes 44°55’S and 46°05’S
in the south-eastern quarter of the South Island of
New Zealand. Its drainage area is 5650 km?, the fifth
largest in New Zealand. For each of the 97 sampling
sites, 10 environmental descriptors that operate at
various spatial scales, ranging from the river
catchment to the bedform scale, were selected to
model the spatial distribution of invertebrate
diversity. These were elevation (m above sea level),
drainage density (total stream length per unit area of
basin in the catchment area of the sample site),
stream order at the sample site, percentage of the
site’s catchment area that is barren (i.e., cleared of
vegetation and subject to major disturbances because
composed of roads or urban areas), percentage of
stream bank adjacent to each sample site that is
composed of exposed bedrock, percentage of the
riparian zone adjacent to the sampling site composed
of exotic pasture grasses, percentage composed of
native tussock grasses, mean water depth (m) at
baseflow at each sampling site, mean channel width
(m), and median particle size of the streambed.
Channel width was measured at six cross-sections
at each sampling site, water depth measured at three
points across each cross-section, and median particle
size estimated using the method of Wolman (1954),
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in which 100 randomly chosen particles are
measured at each site. This last variable can be
considered to be representative of current velocity
which is closely related to the median particle size
of the streambed. Benthic macroinvertebrates were
collected using a standard Surber sampler (mesh size
250 um, surface sampled 0.06 m?), with two samples
per site. The samples were fixed in 5% formaldehyde
and in the laboratory macroinvertebrates were sorted
and identified to species level or to the lowest
taxonomic level possible on the basis of keys in
Winterbourn & Gregson (1989). The database
includes 85 taxa. The Shannon diversity index (H)
was the biological variable chosen to be predicted
by the ANN. Although the usefulness of this index
has been questioned (Green 1979; Norris 1995), it
still constitutes one of the most commonly used
diversity measurements that combines two inde-
pendent pieces of biological information, species
richness and species abundance (Legendre &
Legendre 1998; Townsend et al 2000). For each
sample site, diversity was calculated as:

H=- Z Pi ln P,'

where P; is the proportion of individuals in the
community belonging to the /th taxon.

The assessment of fish distribution and abundance
was performed on data gathered in Lake Pareloup
(maximum depth 37 m, average depth 12.5 m,
surface area 1350 ha, volume 168 million m?) in the
south-west of France (44°12° N, 2°46" E). It is a
warm monomictic lake, undergoing summer thermal
stratification. Low oxygen concentrations below the
thermocline (located at ¢. 10 m depth from early
June to mid September) prevent the fish from
colonising deep water during summer. Fish were
collected weekly from late June to late August 1997
using point abundance sampling by electrofishing
adapted for young fish (Nelva et al. 1979; Copp
1989). This method provides quantitative and com-
parable fish samples without the need for standard-
isation (Copp 1989). Sampling was performed in the
littoral zone of the lake, which exhibits a wide range
of local topographical characteristics. Each week,
30-40 sampling points were investigated, giving a
total of 306 sampling points. Nine habitat variables
were also assessed at each point: distance from the
bank (m); depth (m); local slope of the bottom at
each sampling point (four classes from zero (nil
slope) to three (sheer slope)); percentage of
inundated terrestrial vegetation (aquatic vegetation
is very scarce in the lake and was not found in the
sampling area) visually estimated as the percentage
of bottom area covered; and substratum particle size,
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Fig. 1 Typical 3-layered feed-
torward artificial neural network
(ANN) with one input layer corre-
sponding to the input (i.e., inde-
pendent) variables (open circles),
one hidden layer and one output
layer to estimate the output (i.e.,
dependent) variable (closed cir-
cles). Solid lines show connections
between neurons. Bias neurons are
also shown (hatched circles); their
input value is |. Number of hid-
den neurons was set to obtain op-
timal results.

Input
variables

determined using the Cailleux (1954) methodology,
and expressed in percentage of bottom area
composed of five types of substratum—boulders,
pebbles, gravel, sand, and mud. The variables were
measured in a 1 m? bottom area corresponding to
each sample. A Pearson correlation matrix showed
a strong correlation between sand and mud (r = —
0.98): thus, the variable sand was removed from the
data matrix in order to deal with colinearity and the
models were set up using the eight remaining
environmental variables. Fish were preserved in 4%
formaldehyde solution. Underyearling (0+) roach
(Rutilus rutilus, L.), 0+ perch (Perca fluviatilis, L.),
0+ rudd (Scardinius ervthrophthalamus, L.), 0+
gudgeon (Gobio gobio, L.}, 0+ pike (Esox lucius, L.),
and adult perch, which together represent more than
90% of the fish in Lake Pareloup (Brosse et al.
1999a), were identified and numbers recorded for
each sampling point. Throughout this paper we refer
to analysis of six fish species, although two of the
fish groups are different age classes of the same
species.

Modelling procedure

The ANN architecture is a layered feed-forward
network, in which the non-linear elements (neurons)
are arranged in successive layers, with a one-way
flow of information (i.e., weights) from input layer
to output layer, through a hidden layer (Fig. 1). In
ANN, the computational or processing elements are
called neurons. Like a natural neuron, they have
many inputs but only a single output, which can
stimulate other neurons in the network. Neurons
from one layer are connected to all neurons in the
adjacent layer(s), but no lateral connections within
a layer nor feed-back connections are possible (for
more detail see Lek & Guégan 2000). The number
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of input and output units depends on the
representations of the input and the output objects,
respectively. A “bias” neuron was added to each
computational layer (i.e., hidden and output layer);
these two neurons (Fig. 1) had a constant input value
of one and were used to lower biases in the modelling
procedure (Rumelhart et al. 1986). Training the
network consists of using a training data set to adjust
the connection weights in order to minimise the error
between observed and predicted values. This training
was performed according to the back-propagation
algorithm (Rumelhart et al. 1986). The compu-
tational program was written by one of the authors
(SL) in a Matlab™ version 5.0 environment and
computed with an Intel Pentium III* processor.
Model reliability was assessed using the correlation
coefficient () between the observed values (i.e.,
actual values) and the predicted values. We also used
a performance index (PI) defined as the proportion
of responses within £10% of the actual value to
estimate the percentage of samples well predicted by
the models.

The modelling was carried out in two steps. First,
model training was performed using the whole data
matrix. This step was used to estimate the perform-
ance of the ANN in learning data. Second, we used
the “leave-one-out” bootstrap cross-validation test
(Efron 1983), where each sample is left out of the
model formulation in turn and predicted once, to
validate the models. This procedure is appropriate
when the amount of data is limited and/or when each
sample is likely to have “unique information” (Efron
1983; Kohavi 1995); it has been found to be efficient
for ANN modelling of small data sets (Guégan et al.
1998; Brosse et al. 1999b). This second step allows
the prediction capabilities of the network to be as-
sessed.
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Fig. 2 Schematic representation ot the modelling procedure used to assess the spatial occupancy of the six fish
populations. The six artificial neural network (ANN) models (symbols as in Fig. 1) were performed using the same
data matrix as the input (i.e., environmental variables). Each ANN model predicts abundance of one fish population.
After the predictive modelling procedure, the Garson algorithm gave the percentage contribution of each input vari-
able to the selected output. Finally, the Garson matrix obtained was used to perform a Principal Component Analysis
(PCA) to provide a visual representation of fish spatial occupancy.

A disadvantage of ANN is a lack of explanatory
power. Some analyses, such as multiple regression,
can identify the contribution that each individual
input makes to the output and can also give some
measures of confidence about the estimated
coefficients. However, there is currently no
theoretical or practical way of accurately interpreting
the weights attributed in ANN (Lek et al. 1996b). In
ecology, it is desirable to understand the impact of
the explanatory variables and some authors have
proposed methods allowing the determination of the
impact of the input variables in an ANN analysis
(Garson 1991; Goh 19935; Lek et al. 1996a,b). In the
present study, Garson’s algorithm was used to
quantify the percentage contribution of each variable
in the models. This procedure is based on the
partitioning of the connection weights to determine
the relative importance of the input variables to the
response of the model (output variable). The method
essentially involves partitioning the hidden-output
connection weights of each hidden neuron into
components associated with each input neuron. The
result, expressed as a percentage, gives the relative
importance or distribution of all the output weights

attributable to a given input variable (see Garson
1991 and Goh 1995 for more detail).

Finally, the total fish population assemblage was
investigated. Modelling was carried out after log,
(x +1) transformation of the dependent variables (six
fish species abundances), to reduce the influence of
outliers (ter Braak & Looman 1995). Ten models
were run for each species to check the stability of
the predictions. The influence of each of the eight
environmental variables in the 60 resulting models
(10 models per species x 6 species) was quantified
by means of the Garson algorithm. Then, we used
this matrix to perform a normalised Principal
Component Analysis (PCA) (Legendre & Legendre
1998), where the results of each model were
considered as a statistical unit (Fig. 2). PCA was
therefore performed on a data matrix containing 60
rows corresponding to the units (10 units per species
x 6 species) and eight columns, each accounting for
one environmental variable. This analysis allowed
the microhabitat of the six fish populations to be
taken into account simultaneously to define their
spatial occupancy and thus to describe the fish
community assemblage.
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RESULTS

Invertebrate diversity in tributaries
of the Taieri River basin

The ANN consisted of a 3-layered (10—4—1) feed-
forward network with bias. There were 10 input
neurons to code the 10 independent variables. The
hidden layer had four neurons, determined as the
optimal configuration giving the lowest error in both
training and testing procedures. The output neuron
computed the value of the dependent variable (H).
In the training procedure, results were highly
significant for all the models with correlation
coefficients and PI values close to perfection (» =
0.94 between observed and estimated diversity
values, P<0.001, PI = 84%). Moreover, the majority
of the points in the scatter plots are well aligned
along the diagonal of best prediction (Fig. 3A). In
the testing procedure (leave-one-out), prediction was
less efficient, but still highly significant (P < 0.001).
Although some samples were not accurately
predicted by the models (Fig. 3B), aberrant values
never appeared (i.e., negative values of the predicted
variable) and both r and PI values remained high (r
= (.71 between observed and estimated diversity
values, and PI = 68%).

The results of Garson’s algorithm applied to 10
models were stable as shown by low standard errors
(Fig. 4). The contribution -of the 10 considered
variables ranged between 7 and 13%. A given
variable was assumed to be important if its
contribution was greater than 10% (the mean value
of a theoretical homogeneous distribution of all the
variables; i.e., 100% of contribution/10 variables =
10%). The results emphasise the important relative
contribution of four variables in the model (each
more than 10%), namely elevation, the percentage
of the catchment that 1s barren, the median particle
size of the riverbed, and lack of human influence in
the riparian zone (% of tussock).

Fish microhabitat and species assemblages
in Lake Pareloup

In this case the ANN consisted of a 3-layered
(8—>10-—1) feed-forward network with bias. Eight
input neurons coded the eight independent variables,
the hidden layer had 10 neurons and one output
neuron computed the value of the dependent variable
(abundance of a fish species). We could have used
a single neural network with six output neurons (one
for each of the six fish species), but we preferred to
use six networks with the same architecture, each one
predicting the abundance of a single species. This
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Shannon index (H) estimated

1 T T T T T
1 15 2 25 3 35

Shannon index (H) observed

Fig. 3 Artificial neural network (ANN) model predic-
tions of macroinvertebrate diversity (Shannon index, H)
for the Taieri River study, New Zealand. Scatter plots of
predicted values versus observed values are shown for the:
A, training; and B, testing procedures. Solid line indicates
the perfect line of fit (1:1 ratio). Statistics for the regres-
sions are given in the text.

allowed us to easily extract from the models the
mfluence of the eight environmental variables on
each fish species and facilitated the visualisation of
spatial distribution of the six species together. The
ANN models yielded high correlation coefficients (P
< 0.001) and PIs between observed and predicted
values in both training and testing procedures (Table
1). In the training procedure, values for r and PI for
the six species ranged from 0.63 to 0.92 and 66 to
97%, respectively. In the testing procedure, » and PI
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Fig.4 Percentage contribution of
each of the 10 independent vari-
ables to the prediction of
macroinvertebrates  diversity
(Shannon index, H), obtained by
Garson’s algorithm. Bars indicate
the mean value of the results of the
10 models and horizontal lines rep-
resent standard error. (Tus and Pas
= land use (tussock and pastoral re-
spectively); Med = median parti-
cle size in the streambed; Ele =
clevation; Bar = percentage of ba-
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Table 1 Correlation coefficient (r) between observed

and cstimated values and performance index (Pl) in
artificial neural network (ANN}) training and testing for
the six fish populations (roach, Rutilus rutilus; perch,
Perca fluviatilis; rudd, Scardinius ervthrophthalamus:,
gudgeon, Gobio gobio; pike, Esox lucius). Pl is the
percentage of well-predicted values with an error rate
lower than 10%.

Training Testing

r Pl r Pl
0+ roach 0.79 66 0.74 63
0+ perch 0.68 72 0.61 69
0+ rudd 0.80 69 0.79 61
0+ gudgeon 0.92 97 0.84 96
0+ pike 0.72 90 0.62 91
Adult perch 0.63 94 0.61 91

sin barren (e.g., roads, urban ar-
eas); Dep = water depth; Str =
stream order; Dra = drainagc den-
sity (total stream length per unit
area of basin); Bed = percentage
of bedrock; and Wid = channel
width.)

ranged from 0.61 to 0.84 and 61 to 96%, respec-
tively. Different sets of environmental variables in
the 60 training models (10 models per species, 6
species), assessed using the Garson algorithm,
evidently played important roles in the distribution
of the various species (Table 2). Standard errors,
calculated for each variable from 10 training proce-
dures, were very low, indicating high stability of the
ANN models. Moreover, for most species, fish
microhabitat was defined by several variables,
showing that microhabitat use i1s a result of a
complex combination of habitat characteristics. Only
0+ gudgeon had a simple habitat relationship, with
a single variable, distance from the bank, contribu-
ting in a major way (c. 50%; Table 2).

Table 2 Mean values of the percentage contribution (tstandard error) of each of the eight independent variables to
the prediction of the six fish population densities (roach, Rutilus rutilus; perch, Perca fluviatilis; rudd, Scardinius
ervthrophthalamus; gudgeon, Gobio gobio; pike, Esox lucius), obtained by Garson’s algorithm applied to the results
of'the 10 models for each fish population. Mean contributions superior than 20% are bolded.

0+ roach 0+ perch 0+ rudd 0+ gudgeon 0+ pike Adult perch
Depth 11.77 £0.67 15.55+£0.51 19.25+0.48 10.30 £ 0.62 9.78 +£0.50 21.17 £0.60
Distance 19.36 £ 0.75 22.52 £0.68 14.47 £0.35 52.29+0.93 26.50 +0.87 17.94 +£0.99
Slope 14.03 £ 0.89 19.50+£0.71 12.96 £ 0.41 2721£0.26 14.20 £ 0.61 15.53 +0.81
Boulders 324+0.16 2.18%0.13 529+0.16 222%0.17 1.65 £0.08 6.58 £ 0.34
Pebbles 5.13+0.25 4.15x0.16 5.09+£0.20 2.42+0.09 2.02%£0.10 3.59+0.15
Gravel 531+0.34 337+0.14 5.16+0.26 2.72+0.07 1.83+0.10 2.75+0.15
Mud 16.35+0.45 14.20 £ 0.44 13.01 £0.50 16.99 + 0.46 19.48 + 0.87 19.93 £0.56
Vegetation 24.80 £ 0.81 17.91 £ 0.67 24.78 £0.65 10.351+0.46 24.55£0.58 1251 £0.37
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Fig. 5 Principal Component Analysis (PCA) performed on artificial neural network (ANN) results using Garson’s
algorithm for the six fish populations. For each population, the statistical units (i.e., fish populations) were the resuits
of the 10 ANN models. A, Histogram of cigenvalues; B, distribution of the six fish populations (roach, Rutilus rutilus;
perch, Perca fluviatilis; rudd, Scardinius ervthrophthalamus; gudgeon, Gobio gobio; pike, Esox lucius) and the eight
environmental variables (DEP = depth, SLO = slope, DIS = distance from the bank, BOU = boulders, PEB = pebbles,
GRA = gravel, MUD = mud, VEG = flooded vegetation) on the F1 x F2 plane.

Finally, to visualise the simultaneous spatial
distributions of the six fish species (i.e., community
composition) a normalised PCA was performed on
the relative contributions of each independent
variable in the ANN models (determined using
Garson'’s algorithm) (Fig. 2). The first two axes
accounted for 43.1 and 20.6% of total variation,
respectively (Fig. SA). The PCA revealed significant
correlations (P < 0.01): (1) between flooded
vegetation (VEG) and 0+ roach, 0+ rudd, 0+ perch,
and 0+ pike; (2) between depth (DEP) and adult
perch; and (3) between distance from the bank (DIS)
and 0+ gudgeon. Along the first axis, 0+ gudgeon
and 0+ pike were separated from the other species.
Along the second axis, adult perch were separated
from the overlapping assemblage of O+roach, 0+
rudd, and 0+ perch (Fig. 5B).

DISCUSSION

The Taieri River basin is extensive and heterogene-
ous and the environmental variables in our analyses
were derived from geographic and catchment scales
(elevation and catchment characteristics) as well as
local features (bed particle size, stream width, and
depth). In this large-scale study of streams, the re-
sults of our analysis of macroinvertebrate diversity
were very satisfactory, with predictions from the
ANN being close to perfection for most of the sam-
ples during the training procedure. The ability to
make successful predictions for new samples, as
tested by the cross-validation procedure, was lower
than during the training phase, but more than 65%
of samples were still perfectly predicted (i.e., within
+10% of actual). Nevertheless, some median values
of invertebrate diversity were over- or underestimated
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by the ANN (Fig. 3B); these were from habitats iden-
tified by the model as able to sustain a higher or
lower diversity than that observed. Such discrepan-
cies are partly because of unmeasured environmen-
tal variables; in other words, the 10 environmental
variables were not able to account for the entire
variability of diversity in the sampling sites. For
example, the high instability of some streambeds is
known to influence macroinvertebrate diversity
(Townsend et al. 1997b; Matthaei et al. 1999), but
this variable could not be taken into account because
such information was only available for a limited
number of the Taieri sites. ANN prediction capabili-
ties are also limited by the scope of information
contained in the training data set. Thus, the scarcity
of samples with high Shannon index values induced
an underestimation of the most diverse sites. Nev-
ertheless, most of the points in the scatter plot are
well aligned along the diagonal of best prediction of
coordinates (1:1 ratio). Moreover, all observed sam-
ples with medium or high diversity values were pre-
dicted as able to sustain moderate or high
invertebrates diversity, even if some values were
over- or underestimated (Fig. 3).

The patterns of invertebrate diversity indicated by
the sensitivity analysis of the environmental vari-
ables (Fig. 4) are in accord with other results in the
literature. For example, sites in the Taieri associated
with a high percentage of native tussock can be con-
sidered least disturbed by human activities and cor-
respondingly high diversities are to be expected
(Ormerod et al. 1993; Allan 1995; Townsend et al.
1997a). In the same way, the percentage of barren
areas (e.g., roads, urban areas) is likely to relate to a
decrease in diversity as a result of point-source pol-
lution (Hynes 1960; Williams & Feltmate 1992).
Median particle size was also a major variable in the
models. Streams with a higher median particle size
also possess greater heterogeneity in particle sizes
and streambed habitat heterogeneity (C. R.
Townsend unpubl. data), factors that can be expected
to be associated with higher faunal diversity
(Williams & Mundie 1978; Williams 1980;
Townsend 1989; Townsend et al. 1997b; Vinson &
Hawkins 1998). Finally, elevation proved to be a
highly influential macro-scale factor, as it has in
other studies (Ward 1986; Allan 1995; Jacobsen et
al. 1997). Within individual basins, insect diversity
has been reported to decrease, change irregularly or
increase with elevation, as a result of a complex of
concomitant changes in temperature regime and
other influential factors (see review by Vinson &
Hawkins 1998). It appears that the ANN model
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approach can not only predict stream invertebrate di-
versity, but also identify the ecological importance
of the environmental variables introduced in the
model. On this basis, an interesting future step in the
application of ANN to ecology will be to identify the
influence of anthropogenic disturbance parameters
on biotic communities, with the expectation of de-
veloping bio-assessment methodologies using a “ref-
erence condition” approach (Reynoldson et al.
1997). Thus, ANN models could be developed us-
ing information measured in undisturbed reference
sites (environmental parameters and invertebrate
diversity), and deviations between reference and test
sites may be interpreted with respect to potential
anthropogenic impacts.

In contrast to the large scale of the Taieri River
study, analysis of fish populations in the French lake
involved microhabitat variables. Nevertheless, fish
abundances were, once again, reliably fitted by ANN
to the measured environmental characteristics of the
points sampled in the lake {(Table 1). From an
ecological point of view, the contribution of each
environmental variable to the models for the six
species adds weight to patterns described in the
literature. Thus, 0+ roach, rudd, and perch were
strongly influenced by distance from the bank, depth,
and the presence of vegetation cover, being
associated with shallow littoral areas that provide
both shelter from predators and a rich foraging
habitat (Copp 1992; Christensen & Persson 1993;
Hosn & Downing 1994; Persson & Eklov 1995;
Brosse & Lek 2000). The influence on 0+ pike of
distance from the bank and vegetation cover accords
with its feeding behaviour, pike usually staying
hidden under vegetation waiting for prey (Holland
& Hudson 1984; Turner & Mackay 1985).
Moreover, according to EkIév (1997), occupation by
0+ pike of shallow areas is likely to afford protection
against predation by larger pike. The importance for
0+ gudgeon of distance from the bank and its
indifference to vegetation cover parallels results
from lowland and piedmont rivers (Mastrorillo et al.
1996). Finally, adult perch distribution was strongly
influenced by depth, percentage of mud, and distance
from the bank (boulder cannot be considered to be
an important variable as it contributes only ¢. 7% of
the total information in the adult perch models (Table
2)); this species usually colonises open water located
outside vegetation cover where it preys on
invertebrates (e.g., chironomid larvae) that colonise
muddy areas (Persson 1983; Persson & Eklév 1995).
In the same way, the fish spatial assemblage
visualised on the PCA plane using the ANN results
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(Fig. 5) adds weight to conclusions from various
ecological studies concerning the microhabitat of
these species (Persson 1983; Copp 1992; Hosn &
Downing 1994; Persson & Eklov 1995; Mastrorillo
et al. 1996). For example, the separation of 0+
gudgeon and top-predators (i.e., 0+ pike and adult
perch) from the other fish has been observed in
natural environments (Persson 1983; Persson &
Ekl6v 1995; Mastrorillo et al. 1996). Similarly, the
syntopy of 0+ roach, 0+ rudd, and 0+ perch has been
described elsewhere (e.g., Diehl & Eklov 1995;
Persson & Eklév 1995). We conclude that fish
community composition was reliably predicted using
ANN and this predicted spatial occupancy could be
accurately visualised on a PCA plane. Thus, ANN
is able to reproduce the operation of real, complex
multi-species systems on the basis of the ecological
variables introduced to the models.

The back-propagation ANN approach is evidently
an efficient tool to predict abundance, diversity, and
community composition in both large and small
spatial scale studies. It is this ability to deal with
multiple information sources that provides the power
of the approach, resulting in a significant
improvement in ANN modelling over conventional
predictive techniques (see Lek et al. 1996a,b;
Mastrorillo et al. 1997; Brosse et al. 1999b,c; Brosse
& Lek 2000 for comparisons of techniques).
However, some drawbacks need to be borne in mind,
such as the need for a large data set with numerous
observations to build the models. Further work is
also needed to provide more explanatory power
concerning the relationships between independent
and dependent variables in the models. The work of
Dimopoulos et al. (1999), which proposes a method
based on partial derivatives of the model response
to illustrate the sensitivity of the variables, may
provide a way forward. Nevertheless, the successful
application of ANN at various spatial scales, and for
a range of aquatic ecosystems (lakes and rivers),
organisms (invertebrates and fish), and ecological
descriptors (abundance, Shannon diversity index,
and community composition) demonstrated in this
study opens new fields for the application of ANN
in aquatic ecology.
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