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SUMMARY

1. Multiple linear regression (MLR), generalised additive models (GAM) and artificial

neural networks (ANN), were used to define young of the year (0+) roach (Rutilus rutilus)

microhabitat and to predict its abundance.

2. 0+ Roach and nine environmental variables were sampled using point abundance

sampling by electrofishing in the littoral area of Lake Pareloup (France) during summer

1997. Eight of these variables were used to set up the models after log10 (x + 1)

transformation of the dependent variable (0+ roach density). Model training and testing

were performed on independent subsets of the whole data matrix containing 306 records.

3. The predictive quality of the models was estimated using the determination coefficient

between observed and estimated values of roach densities. The best models were provided

by ANN, with a correlation coefficient (r) of 0.83 in the training procedure and 0.62 in the

testing procedure. GAM and MLR gave lower prediction in the training set (r = 0.53 for

GAM and r = 0.32 for MLR) and in the testing set (r = 0.48 for GAM and r = 0.43 for MLR).

In the same way, samples without fish were reliably predicted by ANN whereas GAM and

MLR predicted absence unreliably.

4. ANN sensitivity analysis of the eight environmental variables in the models revealed

that 0+ roach distribution was mainly influenced by five variables: depth, distance from

the bank, local slope of the bottom and percentage of mud and flooded vegetation cover.

The nonlinear influence of these variables on 0+ roach distribution was clearly shown

using nonparametric lowess smoothing procedures.

5. Non-linear modelling methods, such as GAM and ANN, were able to define 0+ fish

microhabitat precisely and to provide insight into 0+ roach distribution and abundance in

the littoral zone of a large reservoir. The results showed that in lakes, 0+ roach

microhabitat is influenced by a complex combination of several environmental variables

acting mainly in a nonlinear way.
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Introduction

The spatial distribution and abundance of organisms

in ecosystems is of crucial importance for under-

standing ecosystem functioning (Rosenzweig, 1991;

Hayes, Ferreri & Taylor, 1996). Interactions between

animals and their biotic and abiotic environment

influence habitat use and the specific composition of

communities (Schoener, 1974; Begon, Harper & Town-

send, 1996; EkloÈv, 1997). Concerning fish, habitat and

resource partitioning are regarded as key factors

(Werner et al., 1977). For several years, increasing

interest has been taken in the study of habitat and

spatial distribution of lake and river fish (Copp, 1990;

Fausch, 1992; Rossier, 1995; Fischer & Eckmann, 1997).

Within lakes, the littoral zone is an important area for

fish (Bohl, 1980), where abundance is often much

greater than elsewhere (Werner et al., 1977; Brosse

et al., 1999a). Young of the year (0+) fish especially use

the littoral zone during the summer period as these
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areas provide food and shelter (Savino & Stein, 1989).

In lakes, most studies of fish habitat have been

performed using a large spatial scale (Rossier, 1995;

Imbrock, Appenzeller & Eckmann, 1996; Brosse et al.,

1999a) whereas microhabitat studies are still limited to

streams and rivers (Copp, 1990, 1992; Fausch, 1992;

Baran et al., 1996; Mastrorillo et al., 1997; Gozlan et al.,

1999). The lack of knowledge concerning fish micro-

habitat in lakes is probably due to the complexity of

lake fish microhabitat features which are probably

regulated by a complex interaction of environmental

variables acting mainly in a nonlinear way (Brosse

et al., 1999b).

Multiple linear regression (MLR) has frequently

been used as a quantitative method to explore the

relationships between species and their habitat (Binns

& Eiserman, 1979; Fausch, 1992) but this statistical tool

suffers from drawbacks when relationships between

variables are nonlinear (James & McCulloch, 1990).

Transformation of nonlinear variables by logarithmic,

power or exponential functions can appreciably

improve the normality of data, but the model results

often do not reflect ecological reality (Lek et al., 1996b).

Some statistical methods such as generalised additive

models (GAM) and artificial neural network (ANN),

provide an interesting approach comparable to regres-

sion analysis, but are particularly efficient for predict-

ing nonlinear data and explaining complex

relationships between the variables (Rumelhart, Hin-

ton & Williams, 1986; Hastie & Tibshirani, 1990).

Recently, many applications of GAM and ANN in

aquatic ecology have been published, e.g. for model-

ling stream hydrobiological and ecological responses

to climate change (Poff, Tokar & Johnson, 1996),

prediction of global fish species richness (GueÂgan,

Lek & Oberdorff, 1998), prediction of density of brown

trout redds (Lek et al., 1996b), prediction of density and

biomass of fish in streams (Baran et al., 1996; Lek et al.,

1996a; Mastrorillo et al., 1997; Gozlan et al., 1999) and

lakes (Brosse et al., 1999b; Brosse, Lek & Dauba, 1999c).

In this study, we used MLR, GAM and ANN to study

0+ roach (Rutilus rutilus L.) microhabitat use in the

littoral zone of a large reservoir (lake Pareloup, France).

Roach was chosen as it represents one of the most

common fish species in European lowland rivers and

lakes. Although roach diet and growth have been

frequently studied (Hammer, 1985; Cryer, Peirson &

Townsend, 1986; Townsend et al., 1986; Jamet et al.,

1990; Angelibert et al., 1999), microhabitat studies have

been limited to running waters (Copp, 1990, 1992).

These studies used only linear statistical methods

whereas microhabitat can be defined by a complex

combination of several factors acting in a nonlinear way

(Brosse et al., 1999b). Our aim was first to model the

relationships between environmental variables and 0+

roach distribution and to predict its abundance from

environmental characteristics. To reach this goal, we

used three distinct modelling methods and we compare

their performance: (i) a linear method (i.e. MLR), (ii) a

traditional nonlinear method (i.e. GAM) and (iii) a more

advanced modelling technique (i.e. ANN). Then, we

quantified the influence of the environmental variables

on 0+ roach microhabitat use, thus defining its

microhabitat preferences in the littoral zone of the

lake, and enables a discussion of the ecological

significance of 0+ roach distribution.

Methods

Study site and sampling

The study was undertaken during summer 1997 in

Lake Pareloup, a reservoir in the south-west of France

near Rodez (44°129 N, 2°469 E; surface area of 1250 ha

at a volume of about 168 ´ 106 m3; maximum depth

37 m and mean depth 12.5 m). Lake Pareloup is a

warm monomictic lake, which stratifies thermally at

10 m depth and develops a low oxygen content in the

hypolimnion; the thermocline is about 10 m deep

from early June to mid-September. This prevents fish

from colonising deep water in summer.

Fish sampling was performed weekly from the late

larval period (June) to the juvenile period (August) in

the littoral zone of the lake. Sampling point abun-

dance by electrofishing (Nelva, Persat & Chessel,

1979) modified for young fish (Copp, 1989) was

employed to evaluate the microhabitat of 0+ roach.

Electrofishing was performed using a backpack

electroshocker, with a small 10-cm ring anode, to

provide reproducible and quantifiable samples. Such

equipment can be used in a large range of situations

and is efficient for the entire range of 0+ fish sizes

(Copp, 1989). For each sampling point, the anode was

swiftly immersed about 50 cm into the water (less at

shallower points) and stunned fish were collected

with a fine meshed (1 mm) dipnet. Each week, 30±40

sampling points, each separated by 5±10 m as to avoid

biases due to fish escaping from one sample being
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taken in the next, were randomly chosen and

investigated in the same area of the lake. This area

was a 250-m long littoral zone selected for its

topographical heterogeneity. For each of the 306

resulting sampling points, nine habitat variables

were taken into account: distance from the bank

(DIS) in metres, depth (DEP) in metres, local slope of

the bottom at each sampling point (SLO) expressed in

four classes, i.e. from 0 (nil slope) to 3 (sheer slope),

percentage of flooded vegetation cover (VEG) visually

estimated as the percentage of bottom area covered

and substratum particle size determined using the

Cailleux (1954) methodology and expressed in per-

centage of bottom area covered by each of the five

types of substratum: boulders (BOU), pebbles (PEB),

gravel (GRA), sand (SAN) and mud (MUD). Fish

collected were preserved in 4% formaldehyde solu-

tion. In the laboratory, 0+ roach were identified and

counted for each sampling point.

Data preparation

Modelling was carried out after log10 (x + 1) transfor-

mation of the dependent variable, this transformation

was applied to avoid any undue influence of outliers

on the models (ter Braak & Looman, 1995). The

Pearson correlation matrix showed a strong correla-

tion between SAN and MUD (r = ± 0.98) thus, the

variable SAN was removed from the data matrix. The

correlation between the eight remaining variables was

low and only seven out of the 28 coefficients were

significant (P < 0.05). Among these significant coeffi-

cients, all the determination coefficients were under

0.30 (e.g. VEG±DEP = 0.28, DIS±DEP = 0.02).

Then, the whole data matrix (i.e. 306 records ´ eight

environmental variables) was divided into two sub-

matrices. First, all the records with no zero values for

roach density (i.e. 93 records) were isolated from the

samples without roach (i.e. 213). Nil values are often

removed entirely from analyses, as they make the data

noisy, greatly affect the statistical analysis and can

thus induce bias in the determination of the abun-

dance and the spatial distribution of the species by the

models (Pennington, 1996). Nevertheless nil values

actually occur in reality and, according to ter Braak &

Looman (1995), should not be discarded entirely.

Thus, a quarter of these records (i.e. 53 records

without roach) were selected randomly and added

to the first submatrix, leading to a final SM1 matrix

containing 146 records. In the same way, the removal

of three-quarters of the records without roach avoided

an excessive influence of nil values in the model. The

160 nil records removed constitute the second

submatrix (SM0), which was used to test model

prediction of the absence of roach.

Model quality was judged by the hold-out, cross-

validation procedure (Efron, 1983; Efron & Tibshirani,

1995; Kohavi, 1995) to determine recognition perfor-

mance (training set) and prediction performance

(testing sets). Modelling was carried out in four

steps: (i) the models were trained after isolation, by

random selection, of a training set from SM1

(SM1train: three quarters of the records from SM1,

i.e. 110). This step allowed the performance of the

three modelling techniques to be estimated. The

correlation coefficient between observed and pre-

dicted values was used to quantify the ability of the

models to produce the right answer through the

training procedure (recognition performance). (ii) The

models obtained during the training procedure were

tested with the first test set (SM1test) made up of the

remaining one quarter of the records from SM1 (i.e. 36

records). This step allowed the prediction capabilities

of the models to be assessed. (iii) Sub-matrix SM0 (i.e.

160 records without roach) was used as a second test

set. The models obtained with SM1train were tested

with SM0. This step allowed us to estimate the

capacity of the models to estimate samples where no

fish were collected (i.e. to predict absence). (iv)

Finally, after the previous calibration steps, the three

models (i.e. MLR, GAM and ANN) were trained using

the whole SM1 matrix (i.e. 146 records) to determine

the influence of the eight environmental variables in

0+ roach microhabitat use.

Modelling techniques

For MLR, models were set up using all the variables

simultaneously. Calculations were done using Splusâ
software. Final values of the partial standardised

regression coefficients were retained to define the

influence of environmental factors on microhabitat

use by 0+ roach.

To improve the model`s performance, we also used

GAM (Hastie & Tibshirani, 1990) carried out with

Splusâ software. The GAM are a generalisation of

multiple linear regression and of generalised linear

models. They are nonparametric regression methods
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which model the dependent variable as an additive

sum of unspecified functions of covariates. Least

squares and maximum likelihood methods used in

multiple linear regression and generalised linear

models are replaced by quasi-likelihood methods

which rely on a locally weighted scatterplot smoother

usually called `lowess` (Cleveland, 1979). In the

lowess procedure, each sample is smoothed using a

defined proportion of the nearest-neighbours to the

target point. Optimal fitting is obtained iteratively to

minimise the residuals between observed and esti-

mated values. The f-value of each fitted distribution

indicates the proportion of samples perfectly fitted by

the lowess smoother. f varies between 0 and 1

according to the sensitivity of the analysis and is

determined empirically by testing various possibilities

and selecting the one which provides the best

generalisation ability aiming to visualise general

data tendencies (Trexler & Travis, 1993). One of the

major advantages of this method is that it automati-

cally shows the dependence of the response on each of

the predictors.

For ANN modelling, the processing elements in the

network, called neurons, are arranged in a layered

structure. Each neuron is connected to all neurons of

adjacent layers. Neurons receive and send signals

through these connections, they are transmitted in

only one direction: from input layer to output layer

through the hidden layers. The connections are given

a weight which modulates the intensity of the signal

they transmit. The network configuration is

approached empirically by testing various possibili-

ties and selecting the one that provides the best

compromise between bias and variance, i.e. best

prediction in both training and testing sets (Geman,

Bienenstock & Drousat, 1992; Kohavi, 1995). The

model architecture used here was a three-layered

feed-forward network with bias (Fig. 1). The first

layer, called the input layer, connects with the input

variables. In our case, it comprised eight neurons

corresponding to the eight environmental variables.

The last layer, called the output layer, connects to the

output variable. It comprises a single neuron corre-

sponding to the value of the dependent variable to be

predicted (roach density). The layer between the input

and output layers is called the hidden layer. A five

hidden neurons configuration was determined as

optimal (networks with two hidden layers were not

significantly better). We thus had a total of 51

parameters ((eight input neurons ´ five hidden neu-

rons) + (five hidden neurons ´ one output neu-

ron) + six bias parameters).

One disadvantage of ANN is the lack of explana-

tion power. Classical analyses, like MLR, can identify

the contribution each individual input makes on the

output and can also give some measure of confidence

about the estimated coefficient. On the other hand,

there is currently no theoretical or practical way to

accurately interpret the weights attributed in ANN.

For example, weights cannot be interpreted as

regression coefficients and are difficult to use to

compute causal impacts or elasticities. But in ecology,

Fig. 1 A typical, three-layered feed-forward artificial neural network with eight input neurons corresponding to the eight independent

environmental variables (DEP = depth, DIS = distance from the bank, SLO = slope, BOU = boulders, PEB = pebbles, GRA = gravel,

MUD = mud, VEG = flooded vegetation), five hidden layer neurons and one output neuron for estimating 0+ roach densities.

Connections between neurons are shown by solid lines. The bias neurons are also shown, their input value is 1. Five hidden neurons

were used to obtain optimal results between bias and variance (see text for details).
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it is necessary to know the impact of the explanatory

variables. Some authors have proposed methods

allowing the determination of the impact of the

input variables (Garson, 1991; Dimopoulos, Bourret

& Lek, 1995; Goh, 1995; Lek et al., 1996a,b). In this

work, Garson`s algorithm modified by Goh was used

to determine the relative importance of environmen-

tal variables on roach microhabitat. The computa-

tional program was realised in a Matlabâ environ-

ment and computed with an Intel Pentiumâ
processor. Finally, when variables relevant to 0+

roach microhabitat were identified by Garson-Goh`s

algorithm, their influence was visualised using lowess

smoothing functions.

Fig. 2 Calibration of the models. MLR (a,b) GAM (c,d) and ANN (e,f) model predictions of 0+ roach densities (RD, i.e. number of roach

per sample). Scatter plots of predicted values vs. observed values, in the training set (SM1train) for MLR (a), GAM (c) and ANN (e)

training procedures and in the testing set (SM1test) for MLR (b), GAM (d) and ANN (f) testing procedures. The solid line indicates the

perfect fit line (co-ordinates 1 : 1). See text for details.
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Results

Calibration of the models

In the MLR analysis, the correlation coefficients

between observed and predicted values were the

following: in the training set (SM1train), r = 0.32

(Fig. 2a); and in the testing set (SM1test), r = 0.43

(Fig. 2b). Figure 2 shows some pitfalls that may exist

when developing MLR models. Even though the

correlation coefficients were highly significant

(P < 0.001), the predicted values showed, both in

training and testing, that the median and high values

of fish abundance were always underestimated and

most of the nil values were either overestimated or

given aberrant values, i.e. negative fish density. The

points were not well distributed along the line of

perfect prediction (co-ordinates 1 : 1). Nevertheless,

the residuals were independent of estimated values

(r = ± 0.15, P = 0.13 for SM1train and r = 0.01,

P = 0.96 for SM1test). The second test revealed that

most of the samples where no 0+ roach were collected

were predicted as samples containing a medium fish

density (Fig. 3a), thus the performance of the MLR

model was poor.

The results of the GAM showed a slight improve-

ment with respect to MLR models, both in training and

testing sets (r = 0.53, P < 0.001 in the training set

(SM1train) and r = 0.48, P < 0.001 in the testing set

(SM1test)). Even though residuals were independent of

estimated values (r = ± 0.01, P = 0.32 for SM1train and

r = ± 0.07, P = 0.67 for SM1test), like for MLR, high

values of fish densities were systematically under-

estimated, and a large proportion of nil values were

either overestimated or given aberrant values both in

training (Fig. 2c) and testing sets (Fig. 2d). In the same

way, the second test revealed that most of the samples

where no 0+ roach was collected were predicted to

contain a medium fish density (Fig. 3b), thus even

though the performance of the GAM model was

slightly better than that of MLR, it was still not optimal.

The ANN prediction ability is visualised in Fig. 2(e)

which shows the scatter plot between values of 0+

roach density observed and predicted by the ANN

models after a training procedure of 1000 iterations.

The correlation coefficient (r) was 0.83 (P < 0.001) in

the training set and 0.62 (P < 0.001) in the testing set.

In the training set the majority of the points in the

scatter plot were well aligned along the diagonal of

best prediction of co-ordinates [1 : 1] (Fig. 2e) and the

residuals were independent of estimated values

(r = ± 0.01, P = 0.93). In the testing set, prediction

was less efficient, but clearly better than for GAM and

MLR. Even if most samples were over- or under-

estimated, aberrant values never appeared (i.e. nega-

tive values of 0+ roach density) and the assumption of

independence of residuals was verified (r = ± 0.10,

P = 0.56). The underestimation of some medium or

high values of 0+ roach density was due to the

scarcity of samples containing medium or high fish

densities. The network prediction capabilities were

limited by the information contained in the training

Fig. 3 Second tests on the second testing data set (SM0), i.e.

samples without fish. Bars indicate the number of samples for

each class of predicted values of 0+ roach densities (RD). (a)

MLR, (b) GAM, (c) ANN.
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data set, thus the limited number of points with fish

did not allow the network to deal with all the factors

influencing fish distribution. Nevertheless all the

samples with medium and high values of 0+ roach

density were always predicted as suitable habitat,

even if fish density was sometimes over- or under-

estimated (Fig. 2f). Finally, the second test showed

that most of the samples without 0+ roach were

perfectly predicted (Fig. 3c), showing that the ANN

was able to recognise and predict samples without

fish on the basis of the eight environmental variables

introduced in the model. Regression methods applied

to the SM0 data matrix predicted high (for MLR) or

medium (for GAM) values of 0+ roach densities

(Fig. 3a,b), whereas ANN predicted nil or close to nil

fish densities for most of the samples. Thus, ANN

provided an accurate prediction of the samples where

nos 0+ roach were found.

Influence of environmental variables

Concerning MLR, the correlation coefficient obtained

after a training phase on the whole SM1 data matrix

was r = 0.51 (P < 0.001). The influence of each

variable can be roughly assessed by checking the

final standardised values of the regression coeffi-

cients. Among the eight coefficients, three were not

significant (P > 0.05): BOU, SLO and DEP. Fig-

ure 4(a) shows the percentage contribution of each

of the independent variables (i.e. the relative

importance of each environmental variable on

roach microhabitat), on the basis of the absolute

values of the standardised partial coefficients of

MLR. It revealed that the model was strongly

influenced by five variables: mainly DIS (27%),

MUD (19%), VEG (18%) and to a lesser extent

PEB and GRA which each contributed about 11%.

Thus, according to the results of MLR, 0+ roach

microhabitat was best described by the distance

from the bank (DIS), the percentage of mud (MUD)

and the flooded vegetation cover (VEG).

Concerning ANN, the correlation coefficient was

r = 0.85 (P < 0.001). The results of Garson±Goh`s

algorithm stress the weight of five environmental

variables in the model (Fig. 4b) with contributions of

roughly 24% for VEG, 20% for DIS and between 11

and 17% for DEP, SLO and MUD. The three

remaining variables each contributed less than 10%.

Both analyses indicate that the same three variables

(DIS, MUD and VEG) were most strongly associated

with roach density, however, considering the pre-

dictive efficiency of the models, ANN provided more

realistic information. Aiming to visualise how each of

the five most influential variables identified by ANN

acts, we used the information provided by the GAM

model, which reached a correlation coefficient of

r = 0.63 (P < 0.001). Even if the GAM result was

slightly lower than that of ANN, it is slightly better

than the coefficient obtained by MLR. Moreover, in

GAM models, we can directly plot the influence each

predictor has on the dependent variable by represent-

ing the lowess smoothing function on the plot of 0+

roach density vs. the considered variable. Then, the

data fitted using a lowess smoothing function clearly

showed the influence of each of the five important

environmental variables, identified using ANN, on 0+

roach abundance according to the range of variation

of each environmental variable considered.

Fig. 4 Percentage contribution of each of the eight independent

variables (DEP = depth, DIS = distance from the bank,

SLO = slope, BOU = boulders, PEB = pebbles, GRA = gravel,

MUD = mud, VEG = flooded vegetation) to the prediction of 0+

roach densities determined using the results of the training

procedure on the whole SM1 data matrix. (a) Percentage

contribution calculated using the absolute values of the

standardised partial coefficients of the MLR; (b) percentage

contribution obtained by Garson±Goh`s algorithm applied on

the ANN results.
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Age 0+ roach preferred median depth and low and

median distance from the bank (Fig. 5a,b). In the same

way, nil to gentle slopes were preferred to steep

slopes (Fig. 5c). Moreover, 0+ roach preferentially

inhabited areas with median and high cover of

flooded vegetation and avoided areas with no

vegetation and, to a lesser extent, areas poorly and

very highly vegetated (Fig. 5e). Finally, 0+ roach

exhibited a preference for fine organic substrata

(MUD) (Fig. 5d). As a consequence, 0+ roach were

Fig. 5 Contribution profiles (responses) of each of the five most important independent variables for the prediction of 0+ roach

densities (RD) using the information provided by the GAM model trained on the whole SM1 data matrix. Observed values of RD are

plotted vs. each independent variable. On the same plots, the lowess smoothing function is represented by a solid line. (a) Depth,

f = 0.40, (b) distance from the bank, f = 0.40, (c) slope, f = 0.30, (d) mud, f = 0.35, (e) flooded vegetation, f = 0.45. The f-value indicates

the proportion of samples perfectly fitted by the lowess smoother; f varies between 0 and 1 according to the sensitivity of the analysis

and is determined empirically by testing various possibilities and selecting the one which provides the best generalisation ability to

visualise general data tendencies.
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mainly located in shallow, vegetated, gently sloping

areas located close to the bank and, preferably, with a

muddy substratum.

Discussion

The main associations measured between roach

density and microhabitat features in lake Pareloup

can be approximated by linear functions only to a

limited extent (Fig. 2). Unlike ANN, regression

models, even those which use nonlinear transforma-

tions (i.e. GAM), are not able to faithfully reproduce

the relationships occurring in real systems (Fig. 2c,d).

In the present study, the ANN was able to predict

reliably, during the training procedure on the

SM1train matrix, and also to predict new data, during

the testing procedure on the SM1test matrix (Fig. 2e,f).

Nevertheless, some low values of fish density were

overestimated by the network (Fig. 2e,f); these sam-

ples could have come from habitats suitable for 0+

roach but where no fish were actually collected. This

could have had two origins: first, a bias in the

sampling methodology, i.e. fish escapes or under-

estimates, induced by the electrofishing technique

(Bain, Finn & Booke, 1985; Dewey, 1992); second,

there may not be enough fish to fill all suitable

habitats. This second hypothesis is supported by

Angelibert et al. (1999) who reported that the fish

community in lake Pareloup is not saturated. Finally,

the predictive accuracy of the models can be checked

by studying the second test on the data matrix, where

no 0+ roach were found (SM0) (Fig. 3). This second

test validates the ability of ANN to predict accurately

0+ roach density, whereas MLR, and to a lesser extent

GAM, revealed serious shortcomings. However, the

samples predicted as being densely populated by the

ANN model, but where no fish were captured, could

represent areas were the environment is suitable for

0+ roach but not inhabited by fish, supporting our

second hypothesis concerning roach density in the

lake. These results allowed an estimate to be made of

the potential fish density in the samples where no 0+

roach were actually found.

Considering the influence of each environmental

variable on predictions of 0+ roach density using the

training procedure on the whole SM1 data matrix, the

study of the partial standardised coefficients provided

by MLR gave misleading information for two vari-

ables (Fig. 3a): flooded vegetation (VEG) was con-

sidered as the third most influential variable, but the

partial standardised coefficient is negative (± 0.28),

which seems illogical as macrophytes are widely

assumed to be important as fish nursery areas

(Conrow, Zale & Gregory, 1990; Hosn & Downing,

1994), especially for roach which is usually strongly

associated with aquatic vegetation (Garner, 1995;

Rossier, Castella & Lachavanne, 1996). In the same

way, depth was never revealed as a significant

variable in MLR, whereas it usually constitutes an

important feature in 0+ roach habitat choice consider-

ing the requirement for shelters against predation

(Brabrand & Faafeng, 1994; Garner, 1995). Concerning

ANN results, the influence of environmental variables

on fish distribution, assessed using sensitivity analy-

sis of the variables supplied by the ANN model, was

in accordance with ecological factors reported in

previous studies, highlighting the importance of

flooded vegetation, distance from the bank, depth,

bottom slope and fine substrata on 0+ roach micro-

habitat use. This result demonstrates the suitability of

the ANN approach to describe nonlinear relationships

in ecological systems. The assumptions provided by

Garson±Goh`s algorithm are supported by the lowess

analysis of the variables introduced in the model,

showing that the 0+ roach microhabitat is clearly

influenced by several environmental variables acting

in a nonlinear way. This reveals an inability to define

fish microhabitat precisely using linear methods such

as MLR.

A more precise study of 0+ roach microhabitat

using the information provided by the lowess curves

(Fig. 5) showed the avoidance of deep water (more

than 0.5 m), areas more than 10 m distant from the

bank and steeply sloping areas, which are usually

colonised by predators, such as adult perch (Perca

fluviatilis L.), pike (Esox lucius L.) and, occasionally,

pike-perch (Stizostedion lucioperca L.) (Brabrand &

Faafeng, 1994; EkloÈv, 1997). In the same way, areas

without flooded vegetation were not preferred by 0+

roach as open areas are dangerous due to the

enhanced efficiency of predators in open water

(Brabrand & Faafeng, 1994; EkloÈv, 1997). Although

0+ fish are generally located in vegetated areas, which

afford protection from predators and provide a rich

foraging habitat (Rozas & Odum, 1988; Christensen &

Persson, 1993; Persson & EkloÈv, 1995; EkloÈv, 1997), the

use of flooded vegetation by 0+ roach is quite

complex. Median vegetation densities were preferred
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since, though vegetation provides shelter against

predators, it also reduces feeding efficiency of 0+

roach (Johanson, 1987). Generally, 0+ roach feed

opportunistically on phytoplankton, macrophytes,

zooplankton, insect larvae and sediment (Prejs, 1978;

Persson, 1983, 1986; Cryer et al., 1986; Townsend et al.,

1986; Jamet et al., 1990; Michel & Oberdorff, 1995) and

occupy gently sloping areas with muddy bottoms,

because organic deposits in these areas provide food

such as chironomid larvae. Also, 0+ roach prefer

shallow water, but this preference decreases in the

shallower zones (less than 0.2 m) as these areas are

also occupied by rudd (Scardinius erythrophthalamus

L.) larvae. A lower roach density could be induced by

intraspecific competition and/or by different feeding

requirements between 0+ roach and 0+ rudd (Rhein-

berger, Hofer & Weiser, 1987). Finally, the use of

shallow littoral areas could be related to the fish

preferring high temperature which increases foraging

ability (Persson, 1986) and digestion efficiency (Pers-

son, 1982).

This study showed that 0+ roach are mainly located

in the shallow, gently sloping littoral areas in

moderately vegetated areas with muddy bottoms.

Moreover, these habitat features favour the whole

range of sizes of 0+ roach and therefore satisfy

possible habitat changes occurring during the devel-

opment of roach larvae and juveniles (Copp, 1992).

This study therefore constitutes an overview of the

main habitat characteristics of 0+ roach in lake

Pareloup. However, previous studies of 0+ roach

habitat use in lakes described only a larger spatial

scale and the only experiments on roach habitat use

were performed in an artificial environment (i.e. in

enclosures with limited space and low fish density)

and focussed on predator±prey relationships and

interspecific competition (EkloÈv & Persson, 1995;

Persson & EkloÈv, 1995). In the natural environment,

roach habitat use was more complex than in these

experiments although in agreement with Christensen

& Persson (1993), roach tended to colonise preferen-

tially areas where structural heterogeneity is maximal.

Such habitat preferences suggest a trade-off between

the search for food and the requirement for shelter

from predation. Such trade-offs between costs and

benefits are well known in ecology (Persson & EkloÈv,

1995) but differ between organisms and environ-

ments. This may explain why habitat use by 0+ roach

differs in lakes and streams, where 0+ roach habitat is

strongly influenced by current velocity (Moyle &

Baltz, 1985; Copp, 1992). The complexity of habitat

features in lakes could explain why classical linear

methods are sometimes successful in predicting fish

microhabitat in rivers, whereas in lakes more sophis-

ticated statistical methods, such as GAM or ANN, are

needed. These latter methods constitute alternative

approaches in ecology, particularly in cases with

nonlinearly related variables. This shows that overall

trends in fish distribution can accurately be assessed

using a few pertinent environmental variables and

can provide insight into the ecological meaning of fish

microhabitat.
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