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Abstract

The present work describes the development and validation of Artificial Neural Networks (ANN) by comparison
with classical and more advanced parametric and nonparametric statistical modeling methods such as Multiple
Regression (MR), Generalized Additive Models (GAM), and Alternating Conditional Expectations (ACE) to esti-
mate spatial distribution of fish in a mesotrophic reservoir. The modeling approaches were developed and tested
using 60 hydroacoustic transects covering the whole lake. Each transect was divided into 100-m-long sections,
constituting a total of 732 sampling units. For each of them, the relationships between topology, chemica charac-
teristics, and fish abundance were studied. The models had six independent topological (i.e., depth, distance from
the bank, slope, and stratum) and chemical (i.e., temperature and dissolved oxygen) variables and one dependent
output variable (fish density, FD). The data matrix was divided into two parts. The first contained units where FD
was nonnil (i.e.,, 399 sampling units), and the second contained only cases without fish (i.e., 333 sampling units).
Model training and testing procedures were run on the first submatrix after log(FD + 1) transformation. As linear
MR results were not satisfactory (r2 = 0.42 in the training set, and r2 = 0.51 in the testing set) compared with
ANN (r2 = 0.81 in the training set, and r2 = 0.77 in the testing set), we tried nonlinear transformations of the
variables such as logarithmic, lowess (for the GAM), and an optima nonlinear transformation using the SAS
Transreg procedure (for the ACE model), but the determination coefficients remained clearly lower than those
obtained using ANN (r2 = 0.60 in the training set for ACE, and r2 = 0.66 in the training set for GAM). The results
of a second test on the nil submatrix stressed that, compared with other statistical techniques, ANN and, to a certain
extent, GAM models were able to clearly define the potential FDs in samples where no fish were actualy found.
The model showed, on the basis of the topological and chemical variables taken into account, that the predicted
potential FDs in the surface stratum are higher than in the underlying stratum. Finally, on the basis of the sensitivity
analyses performed on the ANN and GAM results, we established relationships between FDs and the six environ-
mental variables. Our results exhibit a clear summer habitat preferendum, the fish (predominantly roach) being
located mainly in the surface stratum, in the warm shallow littoral areas. These observations led us to discuss the
ecological significance of such a fish distribution, which may be due to a trade-off between feeding, predation

avoidance, and endogenous fish requirements.

Hydroacoustics is a well-established and recognized tech-
nique for the assessment and management of aquatic re-
sources (Thorne 1983). In freshwater habitats, echograms
have been used to describe vertical (Eggers 1978; Matthews
et al. 1985; Hamrin 1986), spatial (O’ Brien et al. 1984; Bur-
czynski et a. 1987; Hruska 1989), and temporal (Bohl 1980;
Baker and Paulson 1983; Imbrock et a. 1996) patterns in
fish distribution. Nevertheless, very few studies have simul-
taneously taken into account the relationships between fish
spatial distribution and several environmental variables.
Consequently, the goal of our work was to model the spatial
distribution of lake fish populations according to descriptors
of the physical and chemical characteristics and the topol og-
ical environment, allowing a predictive model of fish distri-
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bution to be set up using easily measurable variables. Con-
ventional techniques, based notably on MR, are capable of
solving many problems, but they sometimes show serious
shortcomings (James and McCulloch 1990). This difficulty
occurs because relationships between variables in environ-
mental sciences are often nonlinear, while the methods used
are intrinsically linear. Nonlinear transformations of the de-
pendent and/or independent variables (e.g., logarithmic,
power, or exponential functions) can improve the results but
often not entirely satisfactorily (Lek et al. 1996b). To address
this deficiency, several nonparametric modeling methods
have been set up such as GAM (Hastie and Tibshirani 1990),
ACE (Young 1981), and, more recently, ANN. ANN, with
the error backpropagation procedure, provides a nonlinear
aternative to linear regression, particularly with nonlinear
relations (Rumelhart et al. 1986). Recently, certain applica-
tions of ANN in aguatic ecology have been published, e.g.,
the use of ANN for modeling stream hydrobiological and
ecological responses to climate changes (Poff et al. 1996),
prediction of phytoplankton production (Scardi 1996), iden-
tification of the major goals of underwater acoustics (Cas-

1293



1294

o Paris

France

»>— 7=

Lake Pareloup

Fig. 1. Map of France showing location of Lake Pareloup and
a representation of the reservoir.

selman et al. 1994), prediction of global fish species richness
(Guégan et al. 1998), prediction of density of brown trout
redds (Lek et a. 1996b), and prediction of density and bio-
mass of various fish species (Baran et a. 1996; Lek et al.
1996a; Mastrorillo et al. 1997).

In this paper, the capacities of ANN and nonparametric
regression methods (i.e., GAM and ACE) are compared for
an MR-type problem. In addition to its primary godl, i.e.,
modeling the relationships between the ecological variables
of the environment and the fish distribution in a reservoir,
the present work aims to quantify the influence of six en-
vironmental variables on fish spatial distribution using ANN
and GAM, leading to the proposal of hypotheses about its
ecological significance.

Materias and methods

Sudy site and sampling—L ake Pareloup was selected as
the study site because of its structura heterogeneity in the
form of numerous bays with a wide range of topographical
characteristics (Fig. 1). Thisreservoir islocated in the south-
west of France, near the city of Rodez. It covers an area of
1,350 ha, for a volume of about 168 X 10° me. The maxi-
mum depth is 37 m, and the average depth is 12.5 m. Lake
Pareloup is a warm monomictic lake, which is therefore sub-
jected to a summer thermal stratification, with alow oxygen
content below the thermocline (located at about 10-m depth
from early June to mid-September) preventing the fish from
colonizing deep water during this period.

Brosse et al.

The survey was carried out during thermal stratification
(July), when the overwhelming mgjority of fish do not live
at the bottom (Schultz 1988; Hruska 1989). Sixty transects
covering the different parts of the lake were performed be-
tween 0900 and 1930 h to avoid miscalculations that could
be caused by diurnal fish migrations in the early morning
and in the evening between shore and open water (Hasler
and Villemonte 1953; Bohl 1980; Imbrock et al. 1996). The
transducer was mounted at the front of a 4-m-long boat that
cruised at a speed of 4.5 knots. Acoustic data were collected
with a Lowrance X-15MA echosounder, operating frequency
192 kHz, equipped with a vertical single-beam transducer
towed 0.3 m below the surface and aimed straight down.
Total beam angle was 20° measured at the —3 dB level. All
pulses were transmitted to the 20° transducer element, and
pulse duration was 0.2 ms. The signals were then amplified
by the echosounder at 20 log,, (R) Time Varied Gain (TVG)
and relayed to the chart recorder and the echointegrator. The
sound level was set at a value such that fish below 60-mm
total length (—60 dB) and other small targets were not de-
tected.

Information provided by the echosounder was recorded on
a portable computer using siBeLIUs software (Richeux et al.
1994), which verticaly divides space into 50-cm strata and
gives the number of fish detected for each 10-m echogram.
The boat position (10 m) from a Global Positioning Sys-
tem (GPS) and lake depth were memorized continuously.
Finally, before and several times during the survey, the sys-
tem was calibrated using a 32-mm-diameter copper sphere.
The accuracy of the system approached =1 dB or £10%
(Foote 1982; MacL ennan and Simmonds 1992).

Each transect chart was divided into subsamples 100 m
long and 5 m thick (1-6 m, 6-11 m), defining 732 sampling
units. Shallow littoral areas (<2 m deep), the first meter
below the surface, and aso the last meter above the bottom
were excluded from the transects because of the dark zone
created by surface and bottom noise. For each of the sam-
pling units, fish echotraces were numbered, and six environ-
mental variables were considered. Mean depth (DEP) ex-
pressed in meters from the surface, mean slope of the bottom
of the lake (SLO) expressed in percentage, and stratum sam-
pled (STR) were provided by the echogram. DIS was the
distance in meters between the middle of each unit and the
closest bank. For STR, two strata 5 m thick were taken into
account, i.e., 1-6 m and 6-11 m below the surface. For each
sounded unit, oxygen concentration (milligram per liter) and
water temperature (°C) were measured each meter from 1-
to 11-m depth. OXY and TEM are the mean values of ox-
ygen concentration and water temperature, respectively, for
each 100-m-long, 5-m-thick unit.

Technique of ANN modeling—For ANN modeling, a mul-
tilayer feed-forward neural network was used. The process-
ing elements in the network, called neurons, are arranged in
a layered structure. The first layer, called the input layer,
connects with the input variables. In our case, was comprised
of six neurons corresponding to the six environmental vari-
ables. The last layer, called the output layer, connects to the
output variable (Fig. 2). It was comprised of a single neuron
corresponding to the value of the dependent variable to be
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Fig. 2. Typical three-layered feed-forward artificial neural net-
work. Six input neurons corresponding to 6 independent variables,
10 hidden layer neurons, and 1 output neuron for estimating FD.
Connections between neurons are shown by solid lines; they are
associated to synaptic weights that are adjusted during the training
procedure. The bias neurons are also shown, and their input value
is 1. The sigmoid activation function is used as a transfer function
in the hidden and output layers.

predicted (FD). The layers between the input and output lay-
ers are caled the hidden layers. There can be one or more
hidden layers, and the number of neurons in each layer is
an important parameter of the network. At some point during
the training phase, the network passes through a configura-
tion that gives the best generaization (Geman et a. 1992;
Smith 1993). After this point, what the network learns
amounts to overfitting, i.e., incapacity of the model to gen-
eralize. Thus, the network configuration is approached em-
pirically by testing various possibilities (i.e., number of hid-
den neurons and number of iterations) and selecting the
network configuration giving the best generalization without
overfitting, i.e., the best compromise between bias and var-
iance (Geman et al. 1992; Kohavi 1995). Each neuron is
connected to al neurons of adjacent layers (neurons within
a layer and in nonadjacent layers are not connected). Neu-
rons receive and send signals through these connections. In
feed-forward networks, signals are transmitted only in one
direction: from input layer to output layer through hidden
layers (no feed-back connections are permitted). Connec-
tions are given a weight that modulates the intensity of the
signal they transmit. The weight plays an important role in
propagation of the signals through the network. They estab-
lish a link between the input variables and their associated
output variable and are said to contain the knowledge of the
neural network about the problem—solution relation.
Training the network consists of using a training data set
to adjust the connection weights in order to minimize the
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Fig. 3. ANN model predictions of FDs. (A, B) Scatterplots of
predicted values vs. observed values in the training set (A) and in
the testing set (B). The solid line indicates the perfect fit line (co-
ordinates 1:1). See text for the detail. (C) Second test sorted for
the two strata; open circles represent FD in the surface stratum, and
black squares represent FD in the underlying stratum.
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Table 1. Results of the ANN, linear MR, and GAM models on the five random training sets
(two-thirds of SM1, i.e., 300 records) and five testing sets (the remaining one-third of records from

SM1, i.e, 99). SD, standard deviation.

ANN MR GAM
Training Testing Training Testing Training Testing
Test 1 0.834 0.795 0.415 0.553 0.625 0.696
Test 2 0.815 0.785 0.399 0.574 0.688 0.520
Test 3 0.796 0.748 0.432 0.486 0.684 0.505
Test 4 0.769 0.706 0.454 0.422 0.657 0.589
Test 5 0.826 0.790 0.422 0.510 0.645 0.623
Mean 0.808 0.765 0.424 0.509 0.660 0.587
SD 0.026 0.038 0.020 0.060 0.024 0.051

error between observed and predicted values. This training
was performed according to the backpropagation algorithm
(Rumelhart et al. 1986). The connection weights, initially
taken at random in the range of —0.3 to 0.3, are iteratively
adjusted by a method of gradient descent based on the dif-
ference between the observed and expected outgoing signals.
Many iterations are necessary to guarantee the convergence
of predicted values toward their expectations without overfit.
The computational program was realized in a Matlab® en-
vironment and computed with an Intel Pentium® processor.

Modeling was carried out after log(x + 1) transformation
of FD, which was applied to avoid an undue influence of
outliers on the determination coefficients (ter Braak and Loo-
man 1995). Then, the whole data matrix (i.e., 732 records
X six environmental variables) was divided in two subma-
trices, one (submatrix SM1) containing records with no zero
values for FD (i.e., 399) and another (submatrix SMQ) with
the records where no fish were detected (i.e., 333). The qual-
ity of the assignment was judged by the hold-out procedure
(Kohavi 1995) to determine recognition performance (train-
ing set) and prediction performance (testing sets). Modeling
was carried out in three steps. (1) The model was trained
after isolation, by random selection, of a training set from
SM1 (SM1itrain: three-fourths of the records from SM1, i.e.,
300). This step allows the performance of the ANN to be
estimated. The determination coefficient between observed
and predicted values was used to quantify the ability of the
model to produce the right answer through the training pro-
cedure (recognition performance). (2) The model obtained
during the training procedure was tested with the first test
set (SM1test) constituted by the remaining one-fourth of the
records from SM1 (i.e., 99). During the testing procedure,
only the input variables were introduced in the network. This
step allows the prediction capabilities of the network to be
assessed. This operation (i.e, random selection of the
SM1train and SM1test submatrix used in the two above-
mentioned steps) was repeated five times, giving rise to
“testl” to “‘test5” to study the stability of the FD predic-
tions. Finally, (3) submatrix SMO was used as a second test
set. The model obtained with SM1train was tested with SMO.
This step alowed us to estimate the potential FDs in the
areas where no fish were detected.

Technique of MR modeling—For MR, calculations were
done using spss® software (Norusis 1993). MR models were

trained and tested using the same data sets as for ANN mod-
eling (SM1train to establish the models and SM1test and
SMO for the first and the second tests of the models). First,
only the dependent variable (FD) was log(x + 1) trans
formed, with an aim toward comparing the two methods
(ANN and MR). Then, we tried to linearize the independent
variables for which distribution was nonnormal (DIS, DEP,
and SLO), using a log transformation for DIS and DEP and
a log(x + 1) transformation for SLO. Aiming to improve
the model’s performance, we also used GAM (Hastie and
Tibshirani 1990). GAM models are a generalization of mul-
tiple linear regression and generalized linear models. They
are nonparametric regression methods that model the depen-
dent variable as an additive sum of unspecified functions of
covariates. Least-squares and maximum likelihood methods
used in multiple linear regression and generalized linear
models are replaced by quasilikelihood methods that rely on
local scatterplot smoothing methods. Here, we used the lo-
cally weighted smoother of Cleveland (1979), currently de-
signed by ““lowess” and called ““‘loess’ in the s-PLUS stetis-
tical computing language. The lowess smoother first
computes a defined percentage of the nearest neighbors to
the target point. A tricube kernel, centered at the target point,
becomes zero at the furthest neighbor. The smoother at the
target point is the fitted value from the locally weighted lin-
ear fit, with weights supplied by the kernel. One of the major
advantages of this method is that it automatically shows the
dependence of the response on each of the predictors. These
results were compared to those obtained using ANN sensi-
tivity analysis. GAM models were set up using s-PLUS® soft-
ware. Finally, as a check, optimal nonlinear transformation
was also tried on the training data set (SM1train), using the
SAS Transreg procedure (SAS 1988). This procedure seeks
an optimal transformation of variables, using a method of
alternating least squares, to fit the data to a linear regression
(Young 1981; Breiman and Friedman 1985; SAS 1988). Two
complementary levels of optimal transformation were tried
using a B-spline transformation. By default, a cubic poly-
nomia transformation was used. To improve the transfor-
mation, knots (or break points) were specified. Each knot
specifies a discontinuity in the nth derivative of the trans-
formation function at the value of the knot. Knots can be
repeated any number of times to decrease smoothness at the
break points. In our case, we used two Transreg transfor-
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Fig. 4. Linear MR (A, B, C) and GAM (D, E, F) model predictions of FDs. (A, B, D, E)
Scatterplots of predicted values vs. observed values in the training set (A, D) and in the testing set
(B, E). The solid line indicates the perfect fit line (coordinates 1:1). See text for details. (C, F)
Second test with linear MR (C) and GAM (F) sorted for the two strata; open circles represent FD
in the surface stratum, and black squares represent FD in the underlying stratum.

mations, i.e., with one and two knots, aiming to obtain the
best determination coefficient possible.

ANN sensitivity of independent variables—One disadvan-
tage of ANN isitslack of explanation power. Some analyses,
like MR, can identify the contribution each individual input
makes on the output and can also give some measures of
confidence about the estimated coefficients. By contrast, cur-
rently, there is no theoretical or practical way of accurately
interpreting the weights attributed in ANN. For example,

weights cannot be interpreted as a regression coefficient nor
can difficulty be used to compute causal impacts or elastic-
ities. Therefore, ANN models are generally better suited for
forecasting or prediction than for policy anaysis. But in
ecology, it is necessary to know the impact of the explana-
tory variables. Some authors have proposed methods allow-
ing the determination of the impact of the input variables
(Garson 1991; Goh 1995; Lek et al. 1996a,b). In this work,
Garson's agorithm and Lek’s algorithm were used to deter-
mine the sensitivity of the environmental variables.
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Fig. 5. Scatterplots of observed values vs. predicted values us-
ing ACE on the training set after the Transreg procedure with one
(A) and two (B) knots. The solid line indicates the perfect fit line
(coordinates 1: 1).

Results

Large variations in FD were observed between samples,
with a high coefficient of variation (345%). As a conse-
quence, the distribution of the dependent variable shows a
highly dissymmetric profile. This kind of distribution is fre-
quent in many problems regarding plants or animals or with
regard to spatial organization of populations. It can be qual-
ified as skewed to the right (Jager and Looman 1995). Be-
cause normal distributions are more convenient to deal with,
FDs that have a log-normal skewed distribution were trans-
formed by taking their logarithm. After transformation, the
coefficient of variation became <120%.

Artificial neural network—The ANN used was a three-
layered (6 — 10 — 1) feed-forward network with bias. There
were six input neurons to code the six independent variables.

Brosse et al.

The hidden layer had 10 neurons, determined as the optimal
configuration (networks with two hidden layers were not sig-
nificantly better), giving the lowest error in the training and
testing sets of data with minima computing time (Lek et al.
1996b,c). The output neuron computes the value of the de-
pendent variable (FD). We thus have atotal of 81 parameters
((6 input neurons X 10 hidden neurons) + (10 hidden neu-
rons X 1 output neuron) + 11 bias parameters). The cali-
bration process has been illustrated by Lek et al. (1996b,c),
where correlation coefficients of training and testing sets of
data are plotted vs. the number of hidden neurons and num-
ber of iterations.

Figures 3A,B show the scatterplots between observed and
predicted values of FDs by the ANN models after alearning
procedure (Fig. 3A) and a testing procedure (Fig. 3B) of
1,000 iterations. The (6 - 10 — 1) ANN model gave the
best fit; the determination coefficient (r?) was 0.83 for the
training set and 0.80 for the testing set. The points in the
scatterplots are well aligned along the diagonal of best pre-
diction of coordinates 1: 1.

Relationships between residuals and values predicted by
the model show that the correlation coefficients were neg-
ligible and not significant (r = 0.06, P = 0.316, and n =
300 in the training set; r = 0.14, P = 0.16, and n = 99 in
the testing set). We can thus consider residuals independent
of the predicted values. The distribution of residuals was
almost symmetrical and close to normal in the training set,
with a mean value of 0.03 (SD = 0.16), and satisfied the
assumption of normality in the testing set (mean = —0.03,
SD = 0.07). To study the performance and the stability of
ANN models, multiple runs were carried out with the train-
ing set of 300 observations and the testing set of 99 obser-
vations randomly chosen from the data set (Table 1). The
results obtained from the five random training and testing
sets showed that the determination coefficients were high for
each of them (mean r2 = 0.81, SD = 0.026 for training sets,
and mean r? = 0.77, SD = 0.038 for testing sets). Despite
the topographical heterogeneity and the large dimensions of
the reservoir, results were satisfactory and showed a certain
stability for the different random sampling points. The stan-
dard deviations of the correlation coefficients were very
small in both the training and the testing sets.

The second test using the SMO matrix isillustrated in Fig.
3C. Estimated values were sorted according to their stratum
and showed two distinct patterns. In the surface stratum,
estimated values were higher (mean = 0.60, SD = 0.13, n
= 156) than in the underlying stratum (mean = 0.32, SD =
0.10, n = 177). The Mann-Whitney nonparametric statistical
test showed a highly significant statistical difference (U =
1,615, P < 0.001) between FDs estimated in the two strata.

Multiple regressson—The MR equations and determina-
tion coefficients were the following:

(1) Without transformation of the independent variables:
in the training set (SM1train), r2 = 0.42 (Fig. 4A), and in
the testing set (SM1test), r2 = 0.55 (Fig. 4B).

log(FD + 1) = 3.197 — 4.5 “DIS — 0.1020XY
— 2e2DEP — 8.1 3SLO — 9.4e 2STR
— 3.1e 27TEM
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(2) With nonlinear transformation of certain independent
variables: in the training set (SM1train), r2 = 0.49, and in
the testing set (SM1test), r2 = 0.59.

log(FD + 1)
= 3.542 — 4.3e %(log(DIS)) — 0.818(log(DEP))
— 5.5e2(log(SLO + 1)) — 8.6e20XY
— 85e2STR — 2.8e ?TEM

For MR without transformation of the independent variables,
al of the coefficients were significant (P < 0.05) except
TEM. With transformation of some independent variables,
only three of the six coefficients were significant (P < 0.05):
DER STR, and OXY.

MR gave a rather good prediction of the data but was
unable to learn (Fig. 4A) and predict (Fig. 4B) high values
of FD, leading to its underestimation. Values of the deter-
mination coefficients both in training and testing sets indi-
cate a clear improvement of the MR result after transfor-
mation of the variables. As this operation improves their
linearity, we can conclude that nonlinear relationships exist
between the dependent and independent variables. Thus, a
GAM (i.e., nonparametric modeling method) was applied.
The results showed a clear improvement of the correlation
coefficients both in training and testing sets (r? = 0.63 in
the training set [SM1train], and r2 = 0.70 in the testing set
[SM1test]). Nevertheless, high values of FD were system-
atically underestimated both in training (Fig. 4D) and testing
sets (Fig. 4E). As a check, a method based on alternating
least squares (ACE) was used to try to linearize the vari-
ables. After 60 iterations of the Transreg procedure, first with
one knot and then with two, the optimal transformations fi-
nally derived yielded a determination coefficient r2 = 0.60
with one knot and r2 = 0.67 with two knots (Fig. 5A,B).
Even though the determination coefficients were higher than
for linear regression, they remained lower than those ob-
tained using ANN and were very close to those obtained
using GAM. MR after nonlinear transformation of the var-
iables (i.e., GAM and ACE) always underestimated high val-
ues of FD (Figs. 4D,E, 5), and some aberrant values (i.e.,
negative values of FD) were predicted (Fig. 5B).

For comparing ANN, linear MR, and GAM, multiple runs
were carried out on the same randomly chosen training and
testing data sets from SM1 and with the same transformation
of the dependent variable (log(x + 1) transformation of the
FD). The results obtained from the five random training and
testing sets showed that the determination coefficients were
significant for al linear MR models (mean r? = 0.42, SD =
0.02 for training sets, and mean r2 = 0.51, SD = 0.06 for
testing sets), but the percentage of explained variability re-
mained clearly lower for MR than for ANN and GAM re-
sults (Table 1). In the same way, between 31 and 49% of
the variability is unexplained by the model using GAM
(mean rz = 0.66, SD = 0.02 for training sets, and mean r?
= 0.59, SD = 0.05 for testing sets), whereas ANN models
aways explained >70% of the variability in both training
and testing procedures (mean r2 = 0.81, SD = 0.03 for
training sets, and mean r2 = 0.77, SD = 0.04 for testing
sets). Findly, the linear MR and GAM tests on the SMO data
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set are represented in Fig. 4C,F. Estimated values were sorted
according to their stratum and show two groups of estimated
FD values corresponding to the upper (mean = 0.64, SD =
0.18, n = 156 for linear MR, and mean = 0.64, SD = 0.16,
n = 156 for GAM) and the underlying strata (mean = 0.33,
SD = 0.17, n = 177 for linear MR, and mean = 0.36, SD
= 0.13, n = 177 for GAM). The Mann—Whitney nonpara-
metric test shows a highly significant statistical difference
(U = 2,975, P < 0.001 for linear MR, and U = 1,871, P
< 0.001 for GAM) between the FD estimated in the two
strata.

Sensitivity of the variables—Concerning ANN, the results
of Garson’s algorithm stress the relative contribution of the
topographical variables in the model, with contributions of
roughly 25% for DIS, 20% for DER, and 15% for SLO.
Moreover, the vertical fish distribution across the epilimnion
(STR) contributes about 15%. Finally, among physica—
chemical factors, only TEM makes an important contribution
(ca. 15%), whereas OXY contributes <11%.

Applying Lek’s algorithm, the influence of the six inde-
pendent environmental variables on spatia fish distribution
in the ANN model is illustrated by six curves (Fig.
6B).These show the influence of the six independent vari-
ables on the dependent variable in ANN modeling. Figure
6B shows four types of sensitivity (or contribution) curves:
(1) exponentially decreasing contribution: DIS and DEP—
the number of fish is maximal for low values of these two
independent variables and then decreases rapidly down to
very low FDs for 250 m from the bank and 15-m total depth;
(2) linear decreasing contribution: STR—most fish are lo-
cated in the upper stratum, i.e., 1-6 m; (3) linear increasing
contribution: TEM—the FD is maximal for high values of
the independent variable; and (4) weak contribution: SLO
and OXY —the contribution of these variables hardly alters
over their range. The profile can be thought of as a *“hori-
zontal line.”

Using GAM, the lowess smoothing function and the ob-
served FD (after log(x + 1) transformation) are reported in
Fig. 6A. The response obtained for each predictor appears
to be correctly related to the observed values. The trends of
the lowess smoothing curves are the same as those obtained
for ANN sensitivity analysis using Lek’s algorithm. How-
ever, these trends are more clearly defined by using ANN
sengitivity analysis than by using GAM for several variables
such as DIS, DER, and TEM.

To conclude, the four most important variables identified
by ANN and GAM for the determination of the fish distri-
bution are DIS, DEP, STR, and TEM.

Discussion

The spatial fish distribution studied here has been reliably
fitted by ANN to the easily measured environmental char-
acteristics of the points sampled in the lake. Thus, spatial
variations of fish distribution in Lake Pareloup are strongly
connected to a set of six environmental variables.

The main processes that determine fish distribution and
diversity can be approximated by linear functions only to a
limited extent, even using simple (e.g., logarithmic) trans-
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formations of variables to linearize their distribution. Al-
though complex transformation of the variables using non-
parametric modeling methods (ACE and GAM) clearly
improves the determination coefficient, it still remains lower
than that obtained by ANN. Moreover, such models are not
able to reproduce the behavior of real systems when very
low or high values of the variables are considered (Lek et
al. 1996b). In ecology, models based on regression principles
have been proposed by several authors (see references in
introductory material ). To improve results, nonlinear trans-
formations of independent and/or dependent variables have
frequently been used (Faush et al. 1988; Hakanson 1996).
However, despite these transformations, the results often re-
mained insufficient (low percentage of explained variance).
In contrast, ANN with only one hidden layer can model non-
linear systems in ecology without transformation of the data
(Goh 1995; Lek et al. 1996b; Scardi 1996). Of course, to
model more complex systems, there is a need for complex
networks (more units in the hidden layer or more than one
hidden layer), adequate training, and larger data sets.

The use of backpropagation of the ANN weights led us
to develop stochastic tools to predict the fish distribution
from the environmental characteristics of a lake. The selec-
tion of input variables introduced into the modeling proce-
dures, their ecological significance, and the constitution of
testing sets of data to assess the performance of the model
are important elements for this type of approach (Fausch et
al. 1988). In the present work, the ANN backpropagation
procedure gave very high correlation coefficients between
observed and predicted values, both in training and testing
sets, which were always clearly significant.

The tests performed on submatrix SMO stress the en-
hanced ahility of ANN compared with MR to discriminate
between the two strata. Even though parametric and non-
parametric MR can reveal a significant statistical difference
between FD in the two strata, Fig. 4C,F shows a large range
of responses inside the same stratum and predicts certain
aberrant (negative) values of FD (Fig. 4C). Moreover, the
test performed using ANN provided interesting insights into
the potential fish distribution in the studied area (Fig. 3C).
We can hypothesize on the basis of the environmental var-
iables taken into account that, among the units where no fish
were detected, some constitute a potentially better habitat for
fish than others.

Figure 3C presents two distinct FD patterns for the STR
variable and reveals that among the units without fish, those
located in the surface stratum constitute a potentially better
habitat for fish than those located in the underlying stratum.
Some hypotheses can be formulated to explain the absence
of fish from these units: (1) shoaling could have caused a
patchy distribution inside homogeneous physical—chemical
areas; and (2) the FDs in the surface stratum could have
been underestimated because of fish escaping from the mo-
tor-driven boat (Schultz 1988). This could explain the nil
FDs recorded in some areas that appeared to offer a favor-
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able habitat for fish and could also explain the difference
between expected and observed values in the ANN ap-
proach. Moreover, the SMO test validates the efficiency of
ANN. Predicted values are not real values, but, on the basis
of the training procedure, the ANN has defined the potential
of each unit of the SMO set to receive a certain FD. This
proves that ANN models are able to reproduce ecological
factors, whereas MR shows many shortcomings, even if the
determination coefficient remains significant.

A theoretical disadvantage of ANN models is that their
parameters do not provide information about the relative im-
portance of the independent variables (although this is not
true when composite variables are used). However, this prob-
lem can be solved by performing sensitivity analysis of the
ANN. Garson (1991) and Goh (1995) have proposed meth-
ods for interpreting neural network connection weights to
illustrate the importance of explanatory variables inside the
ANN. These studies demonstrate the potential of ANN ap-
proaches to explain nonlinear interactions between variables
in complex systems and propose a procedure for partitioning
the connection weights to determine the relative importance
of the various input variables. In ecology, Lek et a.
(1996a,b) proposed an agorithm alowing the visualization
of the profiles of explanatory variables. In addition to the
predictive value of the model, we attempted to detect, by a
simple simulation method, the sensitivity of the different
variables.

The ANN models clearly show how each of the variables
acts in anonlinear way on the general |ake ecosystem. Com-
parison between GAM and ANN sensitivity showed the
same trends as those visualized by plotting each ecological
variable vs. the observed response (FD). Moreover, these
trends are more clearly underlined by ANN sensitivity
curves than those obtained by the lowess smoothing function
used in the GAM (Fig. 6). However, both GAM and ANN
sengitivity analysis underlined the influence of several en-
vironmental variables on the heterogeneity of fish distribu-
tion in the lake. Fish were mainly located in the surface
stratum and in the warm shallow littoral areas, whereas the
underlying waters and the deep, cold, and distant areas were
systematically avoided. This information, provided by the
sengitivity analysis of the variables, is supported by ecolog-
ical factors. The heterogeneous distribution observed in Lake
Pareloup is supported by the ecological trends reported in
the literature (Rossier 1995; Fischer and Eckmann 1997) and
is closely linked to four of the six environmental variables
taken into account. Moreover, most whole-lake studies de-
scribe the fish distribution from a global point of view, con-
sidering only two kinds of macrohabitats, the pelagic and
the littoral zones, without more precise localization (Bohl
1980; Goldspink 1990; Eklov 1997). Other works focus only
on either pelagic (Hamrin 1986; Jurvelius et al. 1988) or
littoral (Rossier 1995; Fischer and Eckmann 1997) areas. In
the same way, fish distribution is commonly defined using
only one or two chemical or topographical variables such as

—

each of the independent variables. On the same plots, the lowess smoothing function with f = 0.50 is represented by a solid line. No lowess
function is plotted for the GAM stratum profile because there are only two strata; this variable was fitted by a linear function.
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water temperature (Hamrin 1986; Imbrock et al. 1996; Ku-
becka and Wittingerova 1998), dissolved oxygen concentra-
tion and water conductivity (Matthews et a. 1985), and
depth and distance from the bank (Rossier 1995; Fischer and
Eckmann 1997). Even if these studies based on hydroacous-
tics and net catches provide insights into the local habitats
of fish, they are unable to extend the results to the scale of
a whole lake and fail to define general trends in fish distri-
bution, for our results show that fish distribution is ruled by
a complex combination of several variables acting mainly in
a nonlinear way.

From an ecological point of view, the correct choice of
habitat is of crucial importance for individual survival and
therefore determines local species distribution (Rosenzweig
1991). Fish distribution permanently seeks a trade-off be-
tween available habitat and the necessity to accomplish vital
functions (Lévéque 1995), leading to habitat partitioning
(Schoener 1974). Therefore, the heterogeneity of the fish dis-
tribution assessed using ANN probably results from these
trade-offs.

The fish community recorded in Lake Pareloup was com-
posed of 15 species, but it was mainly represented by roach
(Rutilus rutilus L.), representing numerically >84% of the
adult fish community (Richeux et al. 1994). Roach feed pref-
erentially during the day (Persson 1983; Jamet et al. 1990)
and generally present an opportunistic feeding behavior: they
feed on plankton, macrophytes, benthos, and sediment
(Niederholzer and Hofer 1980; Persson 1983, 1987; Jamet
et al. 1990; Michel and Oberdorff 1995). Therefore, roach
are located, on the one hand, in the upper water stratum (1—
6 m), where plankton density is the greatest in Lake Pareloup
(Francisco and Rey 1994), and, on the other hand, near the
bottom, in warm shallow areas, mainly composed of mud
with patches of filamentous algae and macrophytes, which
constitute an important food item for roach during summer
(Prejs and Jackowska 1978; Persson 1983; Michel and Ob-
erdorff 1995). Finally, the predation pressure by piscivorous
fish (pike-perch, large perch, and pike), which numerically
represent >9% of the adult fish community (Richeux et al.
1994), could restrict roach distribution in the lake (Eklov
1997). We denote a clear avoidance of deep areas (stratum
= 6-11 m), which may be considered predation avoidance
of pike-perch (Brabrand and Faafeng 1994). Consequently,
most of the essentially roach fish community exhibits a dis-
tinctly patchy distribution in the surface waters of the littoral
zone. Finally, this shows that overall trends in fish distri-
bution can be easily assessed using a few pertinent environ-
mental variables and provides insights into the ecological
meaning of fish distribution on the scale of a whole lake.

The influence of environmental variables on fish distri-
bution, assessed using sensitivity analysis of the variables
supplied by ANN models, is in accordance with ecological
factors reported in previous studies (see above references).
Thus, ANN models are able to reproduce the operation of
real systems on the basis of the ecological variables intro-
duced in the model. Moreover, the predictive power of ANN
overpasses the capabilities of more common techniques,
even though GAM gave acceptable results, without reaching
the same performance as ANN from a predictive and, to a
lesser extent, an explanatory point of view. Consequently,
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ANN models can be used either as a predictive tool or as
an explanatory tool where parametric and nonparametric re-
gression methods are quite limited.

To conclude, the ANN modeling approach used here is a
fast and flexible way to incorporate multiple input parame-
tersinto asingle model. It isthis ability to deal with multiple
information sources that provides the power of this ap-
proach, which results in a significant improvement in ANN
modeling over conventional techniques.
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